13 research outputs found

    Assessing fossil fuel CO_2 emissions in California using atmospheric observations and models

    Get PDF
    Analysis systems incorporating atmospheric observations could provide a powerful tool for validating fossil fuel CO_2 (ffCO_2) emissions reported for individual regions, provided that fossil fuel sources can be separated from other CO_2 sources or sinks and atmospheric transport can be accurately accounted for. We quantified ffCO_2 by measuring radiocarbon (^(14)C) in CO_2, an accurate fossil-carbon tracer, at nine observation sites in California for three months in 2014–15. There is strong agreement between the measurements and ffCO_2 simulated using a high-resolution atmospheric model and a spatiotemporally-resolved fossil fuel flux estimate. Inverse estimates of total in-state ffCO_2 emissions are consistent with the California Air Resources Board's reported ffCO_2 emissions, providing tentative validation of California's reported ffCO_2 emissions in 2014–15. Continuing this prototype analysis system could provide critical independent evaluation of reported ffCO_2 emissions and emissions reductions in California, and the system could be expanded to other, more data-poor regions

    Assessing fossil fuel CO_2 emissions in California using atmospheric observations and models

    Get PDF
    Analysis systems incorporating atmospheric observations could provide a powerful tool for validating fossil fuel CO_2 (ffCO_2) emissions reported for individual regions, provided that fossil fuel sources can be separated from other CO_2 sources or sinks and atmospheric transport can be accurately accounted for. We quantified ffCO_2 by measuring radiocarbon (^(14)C) in CO_2, an accurate fossil-carbon tracer, at nine observation sites in California for three months in 2014–15. There is strong agreement between the measurements and ffCO_2 simulated using a high-resolution atmospheric model and a spatiotemporally-resolved fossil fuel flux estimate. Inverse estimates of total in-state ffCO_2 emissions are consistent with the California Air Resources Board's reported ffCO_2 emissions, providing tentative validation of California's reported ffCO_2 emissions in 2014–15. Continuing this prototype analysis system could provide critical independent evaluation of reported ffCO_2 emissions and emissions reductions in California, and the system could be expanded to other, more data-poor regions

    An improved inlet for precisely measuring the atmospheric Ar/N<sub>2</sub> ratio

    No full text
    International audienceThe atmospheric Ar/N2 ratio is expected to be useful as a tracer of air-sea heat exchange, but this application has been hindered in part due to sampling artifacts. Here we show that the variability in ?(Ar/N2) due to thermal fractionation at the inlet can be on the order of 40-80 per meg, and we introduce the use of an aspirated solar shield that successfully minimizes such fractionation. The data collected using this new inlet have a mean diurnal cycle of 1.0 per meg or less, suggesting that any residual thermal fractionation effect is reduced to this level

    Design and performance of a Nafion dryer for continuous operation at CO<sub>2</sub> and CH<sub>4</sub> air monitoring sites

    No full text
    In preparation for routine deployment in a network of greenhouse gas monitoring stations, we have designed and tested a simple method for drying ambient air to near or below 0.2% (2000 ppm) mole fraction H2O using a Nafion dryer. The inlet system was designed for use with cavity ring-down spectrometer (CRDS) analyzers such as the Picarro model G2301 that measure H2O in addition to their principal analytes, in this case CO2 and CH4. These analyzers report dry-gas mixing ratios without drying the sample by measuring H2O mixing ratio at the same frequency as the main analytes, and then correcting for the dilution and peak broadening effects of H2O on the mixing ratios of the other analytes measured in moist air. However, it is difficult to accurately validate the water vapor correction in the field. By substantially lowering the amount of H2O in the sample, uncertainties in the applied water vapor corrections can be reduced by an order of magnitude or more, thus eliminating the need to determine instrument-specific water vapor correction coefficients and to verify the stability over time. Our Nafion drying inlet system takes advantage of the extra capacity of the analyzer pump to redirect 30% of the dry gas exiting the Nafion to the outer shell side of the dryer and has no consumables. We tested the Nafion dryer against a cryotrap (−97 &deg;C) method for removing H2O and found that in wet-air tests, the Nafion reduces the CO2 dry-gas mixing ratios of the sample gas by as much as 0.1 ± 0.01 ppm due to leakage across the membrane. The effect on CH4 was smaller and varied within ± 0.2 ppb, with an approximate uncertainty of 0.1 ppb. The Nafion-induced CO2 bias is partially offset by sending the dry reference gases through the Nafion dryer as well. The residual bias due to the impact of moisture differences between sample and reference gas on the permeation through the Nafion was approximately −0.05 ppm for CO2 and varied within ± 0.2 ppb for CH4. The uncertainty of this partial drying method is within the WMO compatibility guidelines for the Northern Hemisphere, 0.1 ppm for CO2 and 2 ppb for CH4, and is comparable to experimentally determining water vapor corrections for each instrument but less subject to concerns of possible drift in these corrections

    On the long-term stability of reference gases for atmospheric O2/N2 and CO2 measurements

    No full text
    A three-dimensional Chemistry Transport Model was used to study the meteorologically induced interannual variability and trends in deposition of sulphur and nitrogen as well as concentrations of surface ozone (O(3)), nitrogen dioxide (NO(2)) and particulate matter (PM) and its constituents over Europe during 1958-2001. The model was coupled to the meteorological reanalysis ERA40, produced at the European Centre for Medium-range Weather Forecasts. Emissions and boundary conditions of chemical compounds and PM were kept constant at present levels. The average European interannual variation, due to meteorological variability, ranges from 3% for O(3), 5% for NO(2), 9% for PM, 6-9% for dry deposition, to about 20% for wet deposition of sulphur and nitrogen. For the period 1979-2001 the trend in ozone, due to climate variability is increasing in central and southwestern Europe and decreasing in northeastern Europe, the trend in NO(2) is approximately opposite. The trend in PM is positive in eastern Europe. There are negative trends in wet deposition in southwestern and central Europe and positive trends in dry deposition overall. A bias in ERA40 precipitation could be partly responsible for the trends. The variation and trends need to be considered when interpreting measurements and designing measurement campaigns
    corecore