6,536 research outputs found

    Time and duration of chondrule formation: Constraints from 26Al-26Mg ages of individual chondrules

    Get PDF
    Chondrules from unequilibrated ordinary and carbonaceous chondrites belong to the oldest and most primitive materials from the early solar system and record chemical and isotopic signatures relating to their formation and evolution. These signatures allow tracing protoplanetary disk processes that eventually led to the formation of planetary building blocks and rocky planets. 26Al-26Mg ages based on mineral-mesostasis isochrons of 31 porphyritic ferromagnesian chondrules, that belong mainly to type-II, constrain the time of chondrule melting prior to incorporation into the respective chondrite parent bodies. For this study chondrules from the unequilibrated L, L(LL) and LL ordinary chondrites (UOCs) NWA 5206, NWA 8276, MET 96503, MET 00452, MET 00526, NWA 7936 and QUE 97008 were selected, which are of petrologic types 3.00-3.15 and were thus least metamorphosed after formation. Magnesium and Al isotopes were measured in-situ by Secondary Ion Mass Spectrometry (SIMS) using a CAMECA 1280 ims. 26Mg excess from in-situ decay of 26Al correlating with 27Al/24Mg has been detected in the mesostasis of all but one chondrule. The initial Al isotopic compositions (26Al/27Al)0 and 26Mg/24Mg ratios (d26Mg*0) deduced from internal mineral isochron regressions range from (9.5 ± 2.8) × 10-6 to (3.1 ± 1.2) × 10-6 and -0.020 ± 0.028‰ to 0.011 ± 0.039‰, respectively. The corresponding chondrule ages (∆tCAI), calculated relative to calcium-aluminum-rich inclusions (CAIs) using the canonical 26Al/27Al = (5.23 ± 0.13) × 10-5, are between 1.76_(-0.27)^(+0.36) and 2.92_(-0.34)^(+0.51) Ma and date the melt formation and thus primary chondrule formation from dust-like precursors or reprocessing of older chondrules. The age range agrees with those acquired with different short-lived chronometers and with published 26Al-26Mg ages, the majority of which were obtained for chondrules from the Bishunpur and Semarkona meteorites, although no chondrule with (26Al/27Al)0 > 10-5 was found. Chondrules in single chondrite samples or between different chondrite groups show no distinct age distributions. The initial 26Al/27Al of the oldest chondrules in the L(LL)/LL and L chondrite samples are identical within their 1σ uncertainties and yield a mean age of 1.99_(-0.08)^(+0.08) Ma and 1.81_(-0.10)^(+0.11) Ma, respectively. The oldest chondrules from six of the seven studied samples record a mean age of 1.94_(-0.06)^(+0.07) Ma. Since heating events in the protoplanetary disk could have partially reset the Al-Mg systematics in pre-existing chondrules and this would have shifted recorded 26Al-26Mg ages toward younger dates, the oldest mean age of 1.81_(-0.10)^(+0.11) Ma recorded in L chondrite chondrules is interpreted to date the rapid and punctuated onset of chondrule formation. The density distribution of chondrule ages from this study, which comprises the largest single dataset of OC chondrule ages, combined with published ages for chondrules from ordinary and carbonaceous chondrites reveals major age peaks for OC chondrules at 2.0 and 2.3 Ma. Chondrules in ordinary and carbonaceous chondrites formed almost contemporaneously (with a possible distinction between CC groups) in two chemically distinct reservoirs, probably in density-enriched regions at the edges of Jupiter’s orbit. The young formation ages of chondrules suggest that they do not represent precursors but rather by-products of planetesimal accretion

    The Sensitivity of Auditory-Motor Representations to Subtle Changes in Auditory Feedback While Singing

    Get PDF
    Singing requires accurate control of the fundamental frequency (F0) of the voice. This study examined trained singers’ and untrained singers’ (nonsingers’) sensitivity to subtle manipulations in auditory feedback and the subsequent effect on the mapping between F0 feedback and vocal control. Participants produced the consonant-vowel /ta/ while receiving auditory feedback that was shifted up and down in frequency. Results showed that singers and nonsingers compensated to a similar degree when presented with frequency-altered feedback (FAF); however, singers’ F0 values were consistently closer to the intended pitch target. Moreover, singers initiated their compensatory responses when auditory feedback was shifted up or down 6 cents or more, compared to nonsingers who began compensating when feedback was shifted up 26 cents and down 22 cents. Additionally, examination of the first 50 ms of vocalization indicated that participants commenced subsequent vocal utterances, during FAF, near the F0 value on previous shift trials. Interestingly, nonsingers commenced F0 productions below the pitch target and increased their F0 until they matched the note. Thus, singers and nonsingers rely on an internal model to regulate voice F0, but singers’ models appear to be more sensitive in response to subtle discrepancies in auditory feedback

    Enhanced incorporation of subnanometer tags into cellular proteins for fluorescence nanoscopy via optimized genetic code expansion

    Get PDF
    With few-nanometer resolution recently achieved by a new generation of fluorescence nanoscopes (MINFLUX and MINSTED), the size of the tags used to label proteins will increasingly limit the ability to dissect nanoscopic biological structures. Bioorthogonal (click) chemical groups are powerful tools for the specific detection of biomolecules. Through the introduction of an engineered aminoacyl–tRNA synthetase/tRNA pair (tRNA: transfer ribonucleic acid), genetic code expansion allows for the site-specific introduction of amino acids with “clickable” side chains into proteins of interest. Welldefined label positions and the subnanometer scale of the protein modification provide unique advantages over other labeling approaches for imaging at molecular-scale resolution. We report that, by pairing a new N-terminally optimized pyrrolysyl–tRNA synthetase (chPylRS2020) with a previously engineered orthogonal tRNA, clickable amino acids are incorporated with improved efficiency into bacteria and into mammalian cells. The resulting enhanced genetic code expansion machinery was used to label β-actin in U2OS cell filopodia for MINFLUX imaging with minimal separation of fluorophores from the protein backbone. Selected data were found to be consistent with previously reported high-resolution information from cryoelectron tomography about the cross-sectional filament bundling architecture. Our study underscores the need for further improvements to the degree of labeling with minimal-offset methods in order to fully exploit molecularscale optical three-dimensional resolution

    Finding Concealed Active Faults: Extending the Southern Whidbey Island Fault across the Puget Lowland, Washington

    Get PDF
    The southern Whidbey Island fault zone (SWIF), as previously mapped using borehole data, potential field anomalies, and marine seismic reflection surveys, consists of three subparallel, northwest trending strands extending ~100 km from near Vancouver Island to the northern Puget Lowland. East of Puget Sound, the SWIF makes landfall between the cities of Seattle and Everett but is concealed beneath a thick mantle of young glacial deposits and vegetation. A ~20-km-wide, northwest trending swath of subparallel, low-amplitude aeromagnetic anomalies crosses this region of the Puget Lowland and is on strike with the SWIF. The most prominent aeromagnetic anomaly, the Cottage Lake lineament, extends at least 18 km and lies approximately on strike with the SWIF on Whidbey Island. Subtle scarps and topographic lineaments on Pleistocene surfaces, visible on high-resolution lidar topography at a number of locations along the SWIF, lie on or near these magnetic anomalies. In the field, scarps exhibit northeast-side-up and vertical relief of 1 to 5 m. Excavations across several lidar scarps lying on or near magnetic anomalies show evidence for multiple folding and faulting events since deglaciation, most likely above buried reverse/oblique faults. Excavations in areas away from magnetic anomalies do not show evidence of tectonic deformation. In total, paleoseismological evidence suggests that the SWIF produced at least four earthquakes since deglaciation about 16,400 years ago, the most recent less than 2700 years ago

    Using ordinal logistic regression to evaluate the performance of laser-Doppler predictions of burn-healing time

    Get PDF
    Background Laser-Doppler imaging (LDI) of cutaneous blood flow is beginning to be used by burn surgeons to predict the healing time of burn wounds; predicted healing time is used to determine wound treatment as either dressings or surgery. In this paper, we do a statistical analysis of the performance of the technique. Methods We used data from a study carried out by five burn centers: LDI was done once between days 2 to 5 post burn, and healing was assessed at both 14 days and 21 days post burn. Random-effects ordinal logistic regression and other models such as the continuation ratio model were used to model healing-time as a function of the LDI data, and of demographic and wound history variables. Statistical methods were also used to study the false-color palette, which enables the laser-Doppler imager to be used by clinicians as a decision-support tool. Results Overall performance is that diagnoses are over 90% correct. Related questions addressed were what was the best blood flow summary statistic and whether, given the blood flow measurements, demographic and observational variables had any additional predictive power (age, sex, race, % total body surface area burned (%TBSA), site and cause of burn, day of LDI scan, burn center). It was found that mean laser-Doppler flux over a wound area was the best statistic, and that, given the same mean flux, women recover slightly more slowly than men. Further, the likely degradation in predictive performance on moving to a patient group with larger %TBSA than those in the data sample was studied, and shown to be small. Conclusion Modeling healing time is a complex statistical problem, with random effects due to multiple burn areas per individual, and censoring caused by patients missing hospital visits and undergoing surgery. This analysis applies state-of-the art statistical methods such as the bootstrap and permutation tests to a medical problem of topical interest. New medical findings are that age and %TBSA are not important predictors of healing time when the LDI results are known, whereas gender does influence recovery time, even when blood flow is controlled for. The conclusion regarding the palette is that an optimum three-color palette can be chosen 'automatically', but the optimum choice of a 5-color palette cannot be made solely by optimizing the percentage of correct diagnoses

    Neutron time-of-flight measurements of charged-particle energy loss in inertial confinement fusion plasmas

    Get PDF
    Neutron spectra from secondary ^{3}H(d,n)α reactions produced by an implosion of a deuterium-gas capsule at the National Ignition Facility have been measured with order-of-magnitude improvements in statistics and resolution over past experiments. These new data and their sensitivity to the energy loss of fast tritons emitted from thermal ^{2}H(d,p)^{3}H reactions enable the first statistically significant investigation of charged-particle stopping via the emitted neutron spectrum. Radiation-hydrodynamic simulations, constrained to match a number of observables from the implosion, were used to predict the neutron spectra while employing two different energy loss models. This analysis represents the first test of stopping models under inertial confinement fusion conditions, covering plasma temperatures of k_{B}T≈1-4  keV and particle densities of n≈(12-2)×10^{24}  cm^{-3}. Under these conditions, we find significant deviations of our data from a theory employing classical collisions whereas the theory including quantum diffraction agrees with our data

    Characterization of a submicro-X-ray fluorescence setup on the B16 beamline at Diamond Light Source

    Get PDF
    An X-ray fluorescence setup has been tested on the B16 beamline at the Diamond Light Source synchrotron with two different excitation energies (12.7 and 17 keV). This setup allows the scanning of thin samples (thicknesses up to several micrometers) with a sub-micrometer resolution (beam size of 500 nm × 600 nm determined with a 50 µm Au wire). Sensitivities and detection limits reaching values of 249 counts s−1 fg−1 and 4 ag in 1000 s, respectively (for As Kα excited with 17 keV), are presented in order to demonstrate the capabilities of this setup. Sample measurements of a human bone and a single cell performed at B16 are presented in order to illustrate the suitability of the setup in biological applications.</jats:p

    Constraints on the pMSSM from LAT Observations of Dwarf Spheroidal Galaxies

    Full text link
    We examine the ability for the Large Area Telescope (LAT) to constrain Minimal Supersymmetric Standard Model (MSSM) dark matter through a combined analysis of Milky Way dwarf spheroidal galaxies. We examine the Lightest Supersymmetric Particles (LSPs) for a set of ~71k experimentally valid supersymmetric models derived from the phenomenological-MSSM (pMSSM). We find that none of these models can be excluded at 95% confidence by the current analysis; nevertheless, many lie within the predicted reach of future LAT analyses. With two years of data, we find that the LAT is currently most sensitive to light LSPs (m_LSP < 50 GeV) annihilating into tau-pairs and heavier LSPs annihilating into b-bbar. Additionally, we find that future LAT analyses will be able to probe some LSPs that form a sub-dominant component of dark matter. We directly compare the LAT results to direct detection experiments and show the complementarity of these search methods.Comment: 24 pages, 9 figures, submitted to JCA
    corecore