We examine the ability for the Large Area Telescope (LAT) to constrain
Minimal Supersymmetric Standard Model (MSSM) dark matter through a combined
analysis of Milky Way dwarf spheroidal galaxies. We examine the Lightest
Supersymmetric Particles (LSPs) for a set of ~71k experimentally valid
supersymmetric models derived from the phenomenological-MSSM (pMSSM). We find
that none of these models can be excluded at 95% confidence by the current
analysis; nevertheless, many lie within the predicted reach of future LAT
analyses. With two years of data, we find that the LAT is currently most
sensitive to light LSPs (m_LSP < 50 GeV) annihilating into tau-pairs and
heavier LSPs annihilating into b-bbar. Additionally, we find that future LAT
analyses will be able to probe some LSPs that form a sub-dominant component of
dark matter. We directly compare the LAT results to direct detection
experiments and show the complementarity of these search methods.Comment: 24 pages, 9 figures, submitted to JCA