57 research outputs found

    Little-Parks effect in single YBaCuO sub-micron rings

    Full text link
    The properties of single submicron high-temperature superconductor (HTS) rings are investigated. The Little-Parks effect is observed and is accompanied by an anomalous behavior of the magnetic dependence of the resistance, which we ascribe to non-uniform vorticity (superfluid angular momentum) within the ring arms. This effect is linked to the peculiar HTS-relationship between the values of the coherence length and the London penetration depth.Comment: 14 pages, 3 figure

    Tensor voting for robust color edge detection

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-94-007-7584-8_9This chapter proposes two robust color edge detection methods based on tensor voting. The first method is a direct adaptation of the classical tensor voting to color images where tensors are initialized with either the gradient or the local color structure tensor. The second method is based on an extension of tensor voting in which the encoding and voting processes are specifically tailored to robust edge detection in color images. In this case, three tensors are used to encode local CIELAB color channels and edginess, while the voting process propagates both color and edginess by applying perception-based rules. Unlike the classical tensor voting, the second method considers the context in the voting process. Recall, discriminability, precision, false alarm rejection and robustness measurements with respect to three different ground-truths have been used to compare the proposed methods with the state-of-the-art. Experimental results show that the proposed methods are competitive, especially in robustness. Moreover, these experiments evidence the difficulty of proposing an edge detector with a perfect performance with respect to all features and fields of application.This research has been supported by the Swedish Research Council under the project VR 2012-3512

    Brixsino High-Flux Dual X-Ray and THz Radiation Source Based on Energy Recovery Linacs

    Get PDF
    We present the conceptual design of a compact light source named BriXSinO. BriXSinO was born as demonstrator of the Marix project, but it is also a dual high flux radiation source Inverse Compton Source (ICS) of X-ray and Free-Electron Laser of THz spectral range radiation conceived for medical applications and general applied research. The accelerator is a push-pull CW-SC Energy Recovery Linac (ERL) based on superconducting cavities technology and allows to sustain MW-class beam power with almost just one hundred kW active power dissipation/consumption. ICS line produces 33 keV monochromatic X-Rays via Compton scattering of the electron beam with a laser system in Fabry-PĂ©rot cavity at a repetition rate of 100 MHz. The THz FEL oscillator is based on an undulator imbedded in optical cavity and generates THz wavelengths from 15 to 50 micron

    Genetics of intellectual disability in consanguineous families

    No full text
    Autosomal recessive (AR) gene defects are the leading genetic cause of intellectual disability (ID) in countries with frequent parental consanguinity, which account for about 1/7th of the world population. Yet, compared to autosomal dominant de novo mutations, which are the predominant cause of ID in Western countries, the identification of AR-ID genes has lagged behind. Here, we report on whole exome and whole genome sequencing in 404 consanguineous predominantly Iranian families with two or more affected offspring. In 219 of these, we found likely causative variants, involving 77 known and 77 novel AR-ID (candidate) genes, 21 X-linked genes, as well as 9 genes previously implicated in diseases other than ID. This study, the largest of its kind published to date, illustrates that high-throughput DNA sequencing in consanguineous families is a superior strategy for elucidating the thousands of hitherto unknown gene defects underlying AR-ID, and it sheds light on their prevalence

    Modeling Transport Properties of N 2

    No full text

    Engineering of high quality factor THz metasurfaces by femtosecond laser ablation

    No full text
    We report on the realization of high Q metasurfaces operating in the THz frequency range by femtosecond laser ablation applied to a nanometric metallic layer over a silicon substrate. Two different fabrication methods are used to develop periodic patterns whose basic elements are in form of an array of through-holes or metallic islands. The response of the resulting structures is characterized using a time-domain spectrometer in the frequency range 0.3–1.5 THz. The experimental findings are compared with the predictions of full wave electromagnetic simulations. The fairly good agreement between simulation predictions and experimental findings evidences that the proposed approach can offer a facile way to the elaboration of THz metasurfaces

    Engineering of high quality factor THz metasurfaces by femtosecond laser ablation

    No full text
    We report on the realization of high Q metasurfaces operating in the THz frequency range by femtosecond laser ablation applied to a nanometric metallic layer over a silicon substrate. Two different fabrication methods are used to develop periodic patterns whose basic elements are in form of an array of through-holes or metallic islands. The response of the resulting structures is characterized using a time-domain spectrometer in the frequency range 0.3–1.5 THz. The experimental findings are compared with the predictions of full wave electromagnetic simulations. The fairly good agreement between simulation predictions and experimental findings evidences that the proposed approach can offer a facile way to the elaboration of THz metasurfaces

    YBCO nanobridges: simplified fabrication process by using a Ti hard mask

    No full text
    An innovative fabrication procedure has been developed to obtain YBCO nanobridges from c-axis oriented films. The novelty regards the use of a thin titanium mask used in the patterning process. The use of the Ti makes simpler the fabrication procedure guaranteeing high quality devices, as demonstrated by transport measurements. Critical temperatures and critical current densities scale with the width of the microbridge down to 200 nm in agreement with most results available in literature. The actual properties of the devices, performances, yield and reproducibility, along with an accurate control on doping, may allow the use of these micro-bridges for nanoscale experiments
    • …
    corecore