124 research outputs found

    TCA cycle metabolites associated with adverse outcomes after acute coronary syndrome: mediating effect of renal function

    Get PDF
    AimsTo examine relationships of tricarboxylic acid (TCA) cycle metabolites with risk of cardiovascular events and mortality after acute coronary syndrome (ACS), and evaluate the mediating role of renal function in these associations.MethodsThis is a prospective study performed among 309 ACS patients who were followed for a mean of 6.7 years. During this period 131 patients developed major adverse cardiovascular events (MACE), defined as the composite of myocardial infarction, hospitalization for heart failure, and all-cause mortality, and 90 deaths were recorded. Plasma concentrations of citrate, aconitate, isocitrate, succinate, malate, fumarate, α-ketoglutarate and d/l-2-hydroxyglutarate were quantified using LC-tandem MS. Multivariable Cox regression models were used to estimate hazard ratios, and a counterfactual-based mediation analysis was performed to test the mediating role of estimated glomerular filtration rate (eGFR).ResultsAfter adjustment for traditional cardiovascular risk factors and medications, positive associations were found between isocitrate and MACE (HR per 1 SD, 1.25; 95% CI: 1.03, 1.50), and between aconitate, isocitrate, d/l-2-hydroxyglutarate and all-cause mortality (HR per 1 SD, 1.41; 95% CI: 1.07, 1.84; 1.58; 95% CI: 1.23, 2.02; 1.38; 95% CI: 1.14, 1.68). However, these associations were no longer significant after additional adjustment for eGFR. Mediation analyses demonstrated that eGFR is a strong mediator of these associations.ConclusionThese findings underscore the importance of TCA metabolites and renal function as conjunctive targets in the prevention of ACS complications

    Calcium signaling in endocardial and epicardial ventricular myocytes from streptozotocin-induced diabetic rats

    Get PDF
    © 2020 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd Aims/Introduction: Abnormalities in Ca2+ signaling have a key role in hemodynamic dysfunction in diabetic heart. The purpose of this study was to explore the effects of streptozotocin (STZ)-induced diabetes on Ca2+ signaling in epicardial (EPI) and endocardial (ENDO) cells of the left ventricle after 5–6 months of STZ injection. Materials and Methods: Whole-cell patch clamp was used to measure the L-type Ca2+ channel (LTCC) and Na+/Ca2+ exchanger currents. Fluorescence photometry techniques were used to measure intracellular free Ca2+ concentration. Results: Although the LTCC current was not significantly altered, the amplitude of Ca2+ transients increased significantly in EPI-STZ and ENDO-STZ compared with controls. Time to peak LTCC current, time to peak Ca2+ transient, time to half decay of LTCC current and time to half decay of Ca2+ transients were not significantly changed in EPI-STZ and ENDO-STZ myocytes compared with controls. The Na+/Ca2+ exchanger current was significantly smaller in EPI-STZ and in ENDO-STZ compared with controls. Conclusions: STZ-induced diabetes resulted in an increase in amplitude of Ca2+ transients in EPI and ENDO myocytes that was independent of the LTCC current. Such an effect can be attributed, at least in part, to the dysfunction of the Na+/Ca2+ exchanger. Additional studies are warranted to improve our understanding of the regional impact of diabetes on Ca2+ signaling, which will facilitate the discovery of new targeted treatments for diabetic cardiomyopathy

    Calcium signaling in endocardial and epicardial ventricular myocytes from streptozotocin‐induced diabetic rats

    Get PDF
    Aims/Introduction: Abnormalities in Ca2+ signaling have a key role in hemodynamic dysfunction in diabetic heart. The purpose of this study was to explore the effects of streptozotocin (STZ) - induced diabetes on Ca2+ signaling in epicardial (EPI) and endocardial (ENDO) cells of the left ventricle, after 5-6 months of STZ injection. Materials and Methods: Whole-cell patch clamp was used to measure L-type Ca2+ channel (LTCC) and Na+/Ca2+ exchanger (NCX) currents. Fluorescence photometry techniques were used to measure intracellular free Ca2+ concentration [Ca2+]i. Results: Although LTCC current was not significantly altered, the amplitude (AMP) of Ca2+ transients increased significantly in EPI-STZ and ENDO-STZ compared to controls. Time to peak (TPK) LTCC current, TPK Ca2+ transient, time to half (THALF) decay of LTCC current and THALF decay of Ca2+ transients were not significantly changed in EPI-STZ and ENDO-STZ myocytes compared to controls. NCX current was significantly smaller in EPI-STZ and in ENDO-STZ compared to controls. Conclusions: STZ-induced diabetes resulted in an increase in AMP of Ca2+ transients in EPI and ENDO myocyte that was independent of LTCC current. Such an effect can be attributed, at least in part, to the dysfunction of NCX. Additional studies are warranted to improve our understanding of the regional impact of diabetes on Ca2+ signaling, which will facilitate the discovery of new targeted treatments for diabetic cardiomyopathy

    Effects of Nutrition on Cognitive Function in Adults with or without Cognitive Impairment: A Systematic Review of Randomized Controlled Clinical Trials

    Get PDF
    New dietary approaches for the prevention of cognitive impairment are being investigated. However, evidence from dietary interventions is mainly from food and nutrient supplement interventions, with inconsistent results and high heterogeneity between trials. We conducted a comprehensive systematic search of randomized controlled trials (RCTs) published in MEDLINE-PubMed, from January 2018 to July 2021, investigating the impact of dietary counseling, as well as food-based and dietary supplement interventions on cognitive function in adults with or without cognitive impairment. Based on the search strategy, 197 eligible publications were used for data abstraction. Finally, 61 articles were included in the analysis. There was reasonable evidence that dietary patterns, as well as food and dietary supplements improved cognitive domains or measures of brain integrity. The Mediterranean diet showed promising results, whereas the role of the DASH diet was not clear. Healthy food consumption improved cognitive function, although the quality of these studies was relatively low. The role of dietary supplements was mixed, with strong evidence of the benefits of polyphenols and combinations of nutrients, but with low evidence for PUFAs, vitamin D, specific protein, amino acids, and other types of supplements. Further well-designed RCTs are needed to guide the development of dietary approaches for the prevention of cognitive impairment

    Circulating Metabolites Associated with Body Fat and Lean Mass in Adults with Overweight/Obesity

    Get PDF
    The interplay between fat mass and lean mass within human metabolism is not completely understood. We aimed to identify specific circulating metabolomic profiles associated with these body composition compartments. Cross-sectional analyses were conducted over 236 adults with overweight/obesity from the Satiety Innovation (SATIN) study. Body composition was assessed by dual-energy X-ray absorptiometry. A targeted multiplatform metabolite profiling approach was applied. Associations between 168 circulating metabolites and the body composition measures were assessed using elastic net regression analyses. The accuracy of the multimetabolite weighted models was evaluated using a 10-fold cross-validation approach and the Pearson's correlation coefficients between metabolomic profiles and body compartments were estimated. Two different profiles including 86 and 65 metabolites were selected for % body fat and lean mass. These metabolites mainly consisted of lipids (sphingomyelins, phosphatidylcholines, lysophosphatidylcholines), acylcarnitines, and amino acids. Several metabolites overlapped between these body composition measures but none of them towards the same direction. The Pearson correlation coefficients between the metabolomic profiles and % body fat or lean mass were 0.80 and 0.79, respectively. Our findings suggest alterations in lipid metabolism, fatty acid oxidation, and protein degradation with increased adiposity and decreased lean body mass. These findings could help us to better understand the interplay between body composition compartments with human metabolic processes

    Changes in Circulating Metabolites during Weight Loss and Weight Loss Maintenance in Relation to Cardiometabolic Risk

    Get PDF
    (1) Background: There is a substantial lack of knowledge of the biochemical mechanisms by which weight loss and weight regain exert their beneficial and adverse effects, respectively, on cardiometabolic outcomes. We examined associations between changes in circulating metabolites and changes in cardiometabolic risk factors during diet-induced weight loss and weight loss maintenance. (2) Methods: This prospective analysis of data from the Satiety Innovation (SATIN) study involved adults living with overweight and obesity (mean age=47.5). One hundred sixty-two subjects achieving ≥8% weight loss during an initial 8-week low-calorie diet (LCD) were included in a 12-week weight loss maintenance period. Circulating metabolites (m=123) were profiled using a targeted multiplatform approach. Data were analyzed using multivariate linear regression models. (3) Results: Decreases in the concentrations of several phosphatidylcholines (PCs), sphingomyelins (SMs), and valine were consistently associated with decreases in total (TChol) and low-density lipoprotein cholesterol (LDL-C) levels during the LCD. Increases in PCs and SMs were significantly associated with increases in TChol and LDL-C during the weight loss maintenance period. Decreases and increases in PCs during LCD and maintenance period, respectively, were associated with decreases in the levels of triglycerides. (4) Conclusions: The results of this study suggest that decreases in circulating PCs and SMs during weight loss and the subsequent weight loss maintenance period may decrease the cardiovascular risk through impacting TChol and LDL-C

    Fatty Acids Composition of Blood Cell Membranes and Peripheral Inflammation in the PREDIMED Study: A Cross-Sectional Analysis

    Get PDF
    There is limited evidence from epidemiological studies for the inflammatory or anti-inflammatory properties of fatty acids in blood cell membranes. Therefore, this study examined associations between baseline (n = 282) and 1-year (n = 143) changes in the levels of fatty acids in blood cell membranes with circulating inflammatory markers in older adults at high cardiovascular risk. The data for this cross-sectional analysis was obtained from a case-control study within the PREDIMED study. Linear regression with elastic net penalty was applied to test associations between measured fatty acids and inflammatory markers. Several fatty acids were associated with interferon-γ (IFNγ) and interleukins (ILs) IL-6, IL-8, and IL-10 at baseline and additionally also with IL-1b at 1 year. Omega-6 fatty acids were consistently positively associated with pro-inflammatory IL-6 and IL-8 at baseline. Omega-3 fatty acids including C20:5n3 and C18:3n3 were negatively associated with IFN-γ at 1 year. It is interesting to note that the cis and trans forms of C16:1n7 at 1 year were oppositely associated with the inflammatory markers. C16:1n7trans was negatively associated with IFN-γ, IL-6, IL-8, IL-10, and IL-1b, whereas C16:1n7cis was positively associated with IL-1b. This study adds to the growing body of evidence suggesting potential differences in inflammatory or anti-inflammatory properties of fatty acids in blood cell membranes

    High Plasma Glutamate and a Low Glutamine-to-Glutamate Ratio Are Associated with Increased Risk of Heart Failure but Not Atrial Fibrillation in the Prevención con Dieta Mediterránea (PREDIMED) Study

    Get PDF
    [Background] Although the association between glutamate and glutamine in relation to cardiometabolic disorders has been evaluated, the role of these metabolites in the development of atrial fibrillation (AF) and heart failure (HF) remains unknown.[Objectives] We examined associations of glutamate, glutamine, and the glutamine-to-glutamate ratio with AF and HF incidence in a Mediterranean population at high cardiovascular disease (CVD) risk.[Methods] The present study used 2 nested case-control studies within the PREDIMED (Prevención con Dieta Mediterránea) study. During ∼10 y of follow‐up, there were 509 AF incident cases matched to 618 controls and 326 HF incident cases matched to 426 controls. Plasma concentrations of glutamate and glutamine were semiquantitatively profiled with LC–tandem MS. ORs were estimated with multivariable conditional logistic regression models. [Results] In fully adjusted models, per 1-SD increment, glutamate was associated with a 29% (95% CI: 1.08, 1.54) increased risk of HF and glutamine‐to‐glutamate ratio with a 20% (95% CI: 0.67, 0.94) decreased risk. Glutamine-to-glutamate ratio was also inversely associated with HF risk (OR per 1-SD increment: 0.80; 95% CI: 0.67, 0.94) when comparing extreme quartiles. Higher glutamate concentrations were associated with a worse cardiometabolic risk profile, whereas a higher glutamine-to-glutamate ratio was associated with a better cardiometabolic risk profile. No associations between the concentrations of these metabolites and AF were observed.[Conclusions] Our findings suggest that high plasma glutamate concentrations possibly resulting from alterations in the glutamate-glutamine cycle may contribute to the development of HF in Mediterranean individuals at high CVD risk.Supported by NIH grant R01HL118264 (to FBH); Spanish Ministry of Health (Instituto de Salud Carlos III) and Ministerio de Economía y Competitividad-Fondo Europeo de Desarrollo Regional projects CNIC-06/2007, RTIC G03/140, CIBER 06/03, PI06-1326, PI07-0954, PI11/02505, SAF2016-80532, SAF2009-12304, and AGL2010-22319-C03-03; and Generalitat Valenciana PROMETEO 17/2017, ACOMP2010-181, AP111/10, AP-042/11, ACOM2011/145, ACOMP/2012/190, ACOMP/2013/159, and ACOMP/213/165. CP was the recipient of Instituto de Salud Carlos III Miguel Servet fellowship grant CP 19/00189. PH-A was supported by Juan de la Cierva-Formación postdoctoral fellowship FJCI-2017-32205. MG-F was supported by American Diabetes Association grant #1-18-PMF-029

    Metabolites related to purine catabolism and risk of type 2 diabetes incidence; modifying effects of the TCF7L2-rs7903146 polymorphism.

    Get PDF
    Studies examining associations between purine metabolites and type 2 diabetes (T2D) are limited. We prospectively examined associations between plasma levels of purine metabolites with T2D risk and the modifying effects of transcription factor-7-like-2 (TCF7L2) rs7903146 polymorphism on these associations. This is a case-cohort design study within the PREDIMED study, with 251 incident T2D cases and a random sample of 694 participants (641 non-cases and 53 overlapping cases) without T2D at baseline (median follow-up: 3.8 years). Metabolites were semi-quantitatively profiled with LC-MS/MS. Cox regression analysis revealed that high plasma allantoin levels, including allantoin-to-uric acid ratio and high xanthine-to-hypoxanthine ratio were inversely and positively associated with T2D risk, respectively, independently of classical risk factors. Elevated plasma xanthine and inosine levels were associated with a higher T2D risk in homozygous carriers of the TCF7L2-rs7903146 T-allele. The potential mechanisms linking the aforementioned purine metabolites and T2D risk must be also further investigated
    corecore