8 research outputs found

    An unusually powerful mode of low-frequency sound interference due to defective hair bundles of the auditory outer hair cells

    Get PDF
    International audienceA detrimental perceptive consequence of damaged auditory sen-sory hair cells consists in a pronounced masking effect exerted by low-frequency sounds, thought to occur when auditory threshold elevation substantially exceeds 40 dB. Here, we identified the submembrane scaffold protein Nherf1 as a hair-bundle component of the differentiating outer hair cells (OHCs). Nherf1 −/− mice dis-played OHC hair-bundle shape anomalies in the mid and basal co-chlea, normally tuned to mid-and high-frequency tones, and mild (22–35 dB) hearing-threshold elevations restricted to midhigh sound frequencies. This mild decrease in hearing sensitivity was, however, discordant with almost nonresponding OHCs at the co-chlear base as assessed by distortion-product otoacoustic emissions and cochlear microphonic potentials. Moreover, unlike wild-type mice, responses of Nherf1 −/− mice to high-frequency (20–40 kHz

    La spectrine bv, une spectrine géante dans les cellules sensorielles visuelles et auditives, ses fonctions et son évolution

    No full text
    Le syndrome de Usher (USH) est la cause la plus fréquente de surdité-cécité héréditaire chez l Homme. USH1B est causé par une mutation dans le gène codant la myosine VIIa. Pour comprendre le rôle de cette myosine dans la dystrophie rétinienne, nous avons identifié et caractérisé son interaction avec une spectrine dite non-conventionnelle, la spectrine bV, dans les cellules photoréceptrices de la rétine. Nos avons montré que la spectrine bV s associe également à d autres protéines USH1, l opsine et d autres protéines de la phototransduction, et à des moteurs moléculaires associés aux microtubules. Ainsi, cette spectrine contribuerait au trafic protéique vers le segment externe des photorécepteurs, lieu de la transduction du signal lumineux. Nous avons également montré que la spectrine bV a subi une sélection positive dans la branche des mammifères ce qui pourrait expliquer pourquoi la localisation et le rôle de la protéine varient en fonction du degré de spécialisation cellulaire et de l espèce étudiéeUsher syndrome is the most frequent cause of deaf-blindness in Humans. Defects in myosin VIIa causes the USH1B syndrome. To understand the role of this actin-based motor in the retinal pathology, we identified and characterized its interaction with a non-conventional spectrin, spectrin bV, in the retinal photoreceptor cells. We found that spectrin bV associates also with other USH1 proteins, opsin and some other phototransduction proteins, as well as to the microtubule-based motors. Together our data led us suggest that spectrin bV contribute to protein transport towards the photoreceptor outer disks, site of phototransduction. Moreover, we found that bV spectrin has been submitted to a positive selection in mammalian lineage, which could explain the differences we observed in the localization and the function of the protein in different cell types and speciesPARIS-BIUSJ-Biologie recherche (751052107) / SudocSudocFranceF

    Spectrin βV adaptive mutations and changes in subcellular location correlate with emergence of hair cell electromotility in mammalians

    No full text
    The remarkable hearing capacities of mammals arise from various evolutionary innovations. These include the cochlear outer hair cells and their singular feature, somatic electromotility, i.e., the ability of their cylindrical cell body to shorten and elongate upon cell depolarization and hyperpolarization, respectively. To shed light on the processes underlying the emergence of electromotility, we focused on the βV giant spectrin, a major component of the outer hair cells´ cortical cytoskeleton. We identified strong signatures of adaptive evolution at multiple sites along the spectrin-βV amino acid sequence in the lineage leading to mammals, together with substantial differences in the subcellular location of this protein between the frog and the mouse inner ear hair cells. In frog hair cells, spectrin βV was invariably detected near the apical junctional complex and above the cuticular plate, a dense F-actin meshwork located underneath the apical plasma membrane. In the mouse, the protein had a broad punctate cytoplasmic distribution in the vestibular hair cells, whereas it was detected in the entire lateral wall of cochlear outer hair cells and had an intermediary distribution (both cytoplasmic and cortical, but restricted to the cell apical region) in cochlear inner hair cells. Our results support a scenario where the singular organization of the outer hair cells´ cortical cytoskeleton may have emerged from molecular networks initially involved in membrane trafficking, which were present near the apical junctional complex in the hair cells of mammalian ancestors and would have subsequently expanded to the entire lateral wall in outer hair cells.Fil: Cortese, Matteo. Inserm; Francia. Universite Pierre et Marie Curie; FranciaFil: Papal, Samantha. Inserm; Francia. Universite Pierre et Marie Curie; FranciaFil: Pisciottano, Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Elgoyhen, Ana Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Hardelin, Jean Pierre. Inserm; Francia. Universite Pierre et Marie Curie; FranciaFil: Petit, Christine. Universite Pierre et Marie Curie; Francia. Inserm; FranciaFil: Franchini, Lucia Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: El Amraoui, Aziz. Universite Pierre et Marie Curie; Francia. Inserm; Franci

    The giant spectrin βV couples the molecular motors to phototransduction and Usher syndrome type I proteins along their trafficking route

    No full text
    International audienceMutations in the myosin VIIa gene cause Usher syndrome type IB (USH1B), characterized by deaf-blindness. A delay of opsin trafficking has been observed in the retinal photoreceptor cells of myosin VIIa-deficient mice. We identified spectrin bV, the mammalian b-heavy spectrin, as a myosin VIIa-and rhodopsin-interacting partner in photoreceptor cells. Spectrin bV displays a polarized distribution from the Golgi apparatus to the base of the outer segment, which, unlike that of other b spectrins, matches the trafficking route of opsin and other phototransduction proteins. Formation of spectrin bV-rhodopsin complex could be detected in the differentiating photoreceptors as soon as their outer segment emerges. A failure of the spectrin bV-mediated coupling between myosin VIIa and opsin molecules thus probably accounts for the opsin transport delay in myosin VIIa-deficient mice. We showed that spectrin bV also associates with two USH1 proteins, sans (USH1G) and harmonin (USH1C). Spectrins are supposed to function as heteromers of a and b subunits, but fluorescence resonance energy transfer and in vitro binding experiments indicated that spectrin bV can also form homodimers, which likely supports its aII-independent bV functions. Finally, consistent with its distribution along the connecting cilia axonemes, spectrin bV binds to several subunits of the microtubule-based motor proteins, kinesin II and the dynein complex. We therefore suggest that spectrin bV homomers couple some USH1 proteins, opsin and other phototransduction proteins to both actin-and microtubule-based motors, thereby contributing to their transport towards the photoreceptor outer disks

    Clarin-1 gene transfer rescues auditory synaptopathy in model of Usher syndrome

    No full text
    International audienceClarin-1, a tetraspan-like membrane protein defective in Usher syndrome type IIIA (USH3A), is essential for hair bundle morphogenesis in auditory hair cells. We report a new synaptic role for clarin-1 in mouse auditory hair cells elucidated by characterization of Clrn1 total (Clrn1ex4–/–) and postnatal hair cell–specific conditional (Clrn1ex4fl/fl Myo15-Cre+/–) knockout mice. Clrn1ex4–/– mice were profoundly deaf, whereas Clrn1ex4fl/fl Myo15-Cre+/– mice displayed progressive increases in hearing thresholds, with, initially, normal otoacoustic emissions and hair bundle morphology. Inner hair cell (IHC) patch-clamp recordings for the 2 mutant mice revealed defective exocytosis and a disorganization of synaptic F-actin and CaV1.3 Ca2+ channels, indicative of a synaptopathy. Postsynaptic defects were also observed, with an abnormally broad distribution of AMPA receptors associated with a loss of afferent dendrites and defective electrically evoked auditory brainstem responses. Protein-protein interaction assays revealed interactions between clarin-1 and the synaptic CaV1.3 Ca2+ channel complex via the Cavβ2 auxiliary subunit and the PDZ domain–containing protein harmonin (defective in Usher syndrome type IC). Cochlear gene therapy in vivo, through adeno-associated virus–mediated Clrn1 transfer into hair cells, prevented the synaptic defects and durably improved hearing in Clrn1ex4fl/fl Myo15-Cre+/– mice. Our results identify clarin-1 as a key organizer of IHC ribbon synapses, and suggest new treatment possibilities for USH3A patients

    Successful Gene Therapy in the RPGRIP1-deficient Dog: a Large Model of Cone-Rod Dystrophy.

    No full text
    International audienceFor the development of new therapies, proof-of-concept studies in large animal models that share clinical features with their human counterparts represent a pivotal step. For inherited retinal dystrophies primarily involving photoreceptor cells, the efficacy of gene therapy has been demonstrated in canine models of stationary cone dystrophies and progressive rod-cone dystrophies but not in large models of progressive cone-rod dystrophies, another important cause of blindness. To address the last issue, we evaluated gene therapy in the retinitis pigmentosa GTPase regulator interacting protein 1 (RPGRIP1)-deficient dog, a model exhibiting a severe cone-rod dystrophy similar to that seen in humans. Subretinal injection of AAV5 (n = 5) or AAV8 (n = 2) encoding the canine Rpgrip1 improved photoreceptor survival in transduced areas of treated retinas. Cone function was significantly and stably rescued in all treated eyes (18-72% of those recorded in normal eyes) up to 24 months postinjection. Rod function was also preserved (22-29% of baseline function) in four of the five treated dogs up to 24 months postinjection. No detectable rod function remained in untreated contralateral eyes. More importantly, treatment preserved bright- and dim-light vision. Efficacy of gene therapy in this large animal model of cone-rod dystrophy provides great promise for human treatment
    corecore