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Abstract 

A detrimental perceptive consequence of damaged auditory sensory hair cells consists in a 

pronounced masking effect exerted by low-frequency sounds, thought to occur when auditory 

threshold elevation substantially exceeds 40 dB. Here, we identified Nherf1, a PDZ domain-

containing protein as a hair-bundle component of the differentiating outer hair cells (OHCs). 

Nherf1-/- mice displayed OHC hair-bundle shape anomalies in the mid and basal cochlea, 

normally tuned to mid- and high-frequency tones, and mild (22-35 dB) hearing-threshold 

elevations restricted to mid-high sound frequencies. This mild decrease in hearing sensitivity 

was, however, discordant with almost non-responding OHCs at the cochlear base as assessed 

by distortion-product otoacoustic emissions and cochlear microphonic potentials. Moreover, 

unlike wild-type mice, responses of Nherf1-/- mice to high-frequency (20-40 kHz) test tones 

were not masked by tones of neighboring frequencies. Instead, efficient maskers were 

characterized by: i) their frequencies up to two octaves below the probe-tone frequency, ii) 

unusually low intensities, up to 25 dB below probe-tone level, and iii) growth-of-masking slope 

(2.2 dB per dB) reflecting their compressive amplification. Together, these properties do not fit 

the current acknowledged features of a hypersensitivity of the basal cochlea to lower 

frequencies, but rather suggest a novel mechanism. Low-frequency maskers, we propose, may 

interact within the unaffected cochlear apical region with mid-high frequency sounds 

propagated there via a mode possibly using the persistent contact of misshaped OHC hair-

bundles with the tectorial membrane. Our findings thus reveal a novel source of misleading 

interpretations of hearing thresholds and of hypervulnerability to low-frequency sound 

interference. 

 

Significance  

We show that Nherf1 is necessary for the correct shaping of the stereocilia-bundle of outer hair 

cells in the basal cochlea. The mild elevation of hearing thresholds of Nherf1-/- mice at high 

frequencies (22-35 dB) were inconsistent with the almost total loss of outer hair cells 

functionality in the basal cochlea. Responses of Nherf1-/- mice to high-frequency (20-40 kHz) 

test-tones were masked by tones displaying inordinate characteristics in frequency, level and 

growth response. We suggest that in Nherf1-/- mice, high-frequency vibrations are detected in 

the unaffected apical region of the cochlea, thus accounting for the highly powerful masking 

effect of low-frequency sound. This novel source of misleading evaluation of high-frequency 

hearing thresholds and hypervulnerability to low-frequency sound interference should be 

systematically sought in hearing-impaired patients. 
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INTRODUCTION  

Mammalian hearing displays remarkable sensitivity, fine temporal acuity and exquisite 

frequency selectivity, which contribute to auditory scene analysis and speech intelligibility. The 

first steps of sound processing, i.e. sound wave detection and neuronal encoding in the cochlea, 

are performed by two populations of hair cells, the inner hair cells (IHCs) and the outer hair 

cells (OHCs). These cells are sandwiched between the underlying basilar membrane (BM) and 

the overlying tectorial membrane (TM) (Fig. S1A). IHCs are the genuine sensory cells that 

transduce the sound stimuli into electrical signals in the primary auditory neurons. OHCs are 

mechanical effectors that amplify the sound-evoked movements of the cochlear partition, 

sharpen its frequency selectivity and produce waveform distortions (1, 2). A pure-tone stimulus 

entering the cochlea elicits a traveling wave that propagates along the BM from the cochlear 

base towards its apex, increasing in amplitude until it peaks at a characteristic place, where the 

mechanical properties of the cochlea are best tuned to the stimulus frequency. Beyond this 

characteristic place, the amplitude of the traveling wave declines rapidly to zero (1). The 

gradual changes in mechanical properties of the cochlea along the BM contribute to 

establishing the frequency-to-place map such that high-frequency sounds produce maximal 

responses in the basal region of the cochlea and low-frequency sounds propagate further 

towards the apex. In the normal cochlea, in response to a pure tone, a locally restricted OHC-

driven active process boosts the traveling wave, and enhances and sharpens its peak, 

particularly at low stimulus levels. This causes compressive growth of the wave amplitude at 

the place tuned to its frequency (1, 2). 

Single auditory-neuron tuning curves (TC) indicate the minimum intensity of a tone 

required to elicit a neuronal response as a function of tone frequency; they are informative 

about sound-frequency analysis in the cochlea. These curves display a dip at the characteristic 

frequency (CF) of the place where the neuron recorded is connected; this allows the frequency-

to-place correspondence to be established. Furthermore, the sharpness of the dip indicates that 

of the frequency tuning of the innervated IHC (1). Masking TCs, which can be obtained by 

non-invasive techniques, also provide a reliable evaluation of cochlear frequency selectivity. 

They depict the minimum intensity of a masking sound required to suppress the response 

produced by a probe tone near its threshold of detection, as a function of masking sound 

frequency. The masking TC-dip corresponds to the most efficient masking effect, and lies near 

the CF of the cochlear place where the masker and probe sounds interact most efficiently. In 

the normal cochlea, this CF is close to the probe frequency. The normal masking TCs also 

present a secondary minimum: a broad, low-frequency segment less sensitive than the dip, 

called the TC tail. In the tail interval, the low frequency maskers exert their effect at the probe 
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CF place, but only at levels at least 40 dB higher than the intensity that confers masking at the 

dip frequency.  

The most common consequence of OHC impairment is an increased width of TC dips 

and a decreased dip sensitivity, whereas the sensitivity in the interval of the tail may increase. 

Frequency shifts of TC dips, less common, are considered to reflect off-frequency hearing (3, 

4), a condition reported in patients with dead cochlear zones defined as cochlear intervals in 

which IHCs and/or associated neurons are non-functional. However, intense sound stimulations 

may be detected in cochlear regions adjacent to dead zones, inferred from the position of where 

the masking-TC dips have shifted (4). About 60 % of deaf people with a hearing threshold 

above 70 dB have cochlear dead regions (4). 

Perturbed frequency selectivity leads to substantial difficulties in understanding speech. 

Its detection in hearing-impaired individuals is therefore essential and appropriate patient 

management requires its origin to be determined. This would also help clarifying the 

involvement of the various cochlear structures in sound processing and the way they interplay 

in both normal and pathological conditions. Here, we report a study of the mouse mutant 

Nherf1-/- defective for Nherf1 (Na+-H+ exchanger regulatory factor 1), a PDZ domain-

containing protein abundant in the OHC hair bundles. Morphological analysis showed hair 

bundles anomalies of OHCs in the basal, but not apical, region of the cochlea. 

Electrophysiological investigations revealed an interference, with inordinate characteristics, of 

low-frequency sounds with the response to high-frequency sounds. The current models of 

intense low-frequency interference cannot explain these characteristics. We propose an 

alternative explanation of the extreme vulnerability of Nherf1-/- mice to low-frequency sounds. 
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RESULTS 

Nherf1, a PDZ domain-containing protein that is abundant in the OHC hair bundle 

Slc9a3r1 (solute carrier family 9, member 3, regulatory 1) transcripts were identified in a 

subtracted cDNA library designed to search for proteins preferentially or specifically expressed 

in sensory epithelia of the inner ear. Slc9a3r1 encodes Nherf1 (also called Ezrin-radixin-

moesin-binding protein of 50 kDa, Ebp50), a member of the Nherf protein family (Fig. S2A,B) 

that consists of four PDZ domain-containing adaptor proteins present in most polarized 

epithelial cells. In parallel, our work with the yeast two-hybrid system to search for partners 

interacting with key components of the hair bundle identified Nherf1 as possibly binding to the 

cytodomain of cadherin-23 (Fig. S2A). Cadherin-23 forms both the transient early lateral links 

that connect stereocilia to each other and to the kinocilium, and the tip-link, central to the 

gating of the mechanoelectrical transduction channels (Fig. S1B). Colocalization and co-

immunoprecipitation experiments provided further evidence for an interaction between Nherf1 

and cadherin-23 (Fig. S2C-F). 

The spatiotemporal distribution of Nherf1 in wild-type mice was analyzed using anti-

Nherf1 specific antibodies (Figs. 1A-C, S3A). On embryonic day 15.5 (E15.5), Nherf1 was 

detected in stereocilia as they emerged at the apical surface of the differentiating hair cells in 

the basal region of the cochlea (Fig. S3B). As development proceeded, Nherf1 immunostaining 

increased in the hair bundles of IHCs and OHCs, with the labeling intensity increasing from the 

cochlear base to apex (Fig. 1A). By E17, Nherf1 was detected in the hair bundles of all hair 

cells, throughout the cochlea (Fig. S3B). The labeling was most intense at the tips of the 

stereocilia (Fig. S3C). At post-natal (P) stages, Nherf1 was no longer detected in IHC hair 

bundles, whereas the labeling intensity in the OHC hair bundles continued to increase up to P5, 

and declined from P10 onwards (Figs. 1A, S3B). Nherf1 and cadherin-23 were both present at 

the tips of stereocilia in the differentiating OHC hair bundles (Fig. 1B), and Nherf1 

immunoreactivity was substantially lower in cadherin-23 deficient (Cdh23v2j/v2j) than control 

mice (Fig. 1C), which is consistent with the two proteins interacting also in vivo. 

 

OHC hair bundles from Nherf1-/- mice display a base-to-apex gradient of abnormal 

shapes 

Scanning electron microscopy analysis of the differentiating and mature cochlea in 

Nherf1-/- mice showed major hair bundle anomalies in OHCs, but not IHCs (Figs. 2, S4,5). At 

early (P0-P5) and later (P20 to P60) post-natal stages, the OHC hair bundles had rounded, 
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hooked, wavy or linear shapes (Figs. 2A,B; S4A). However, the length, and the number of 

stereocilia per OHC hair bundle, the regular staircase-like pattern of the stereocilia rows, and 

the hair-bundle links that connect the growing stereocilia, did not differ between Nherf1-/- and 

control mice (Figs. 2, S4B). Despite the persistence of the links between the kinocilium and 

adjacent stereocilia, the positioning of the kinocilia relative to their expected positions along 

the planar polarity axis (Figs. 2D, S4C) was abnormal in OHCs at the cochlear base in P3-P7 

Nherf1-/- mice (Fig. S4C: only 26±2 % of the kinocilia at the cochlear base were present within 

6° of the PCP axis, versus 58±3 % for wild-type mice). Quantitative analysis of the Nherf1-/- 

cochlea at P20-P25 revealed a conspicuous cochlear base-apex gradient of hair bundle shape 

anomalies: 80±5 %, 50±5 %, and 10±2 % of hair bundles were abnormal in the basal, middle, 

and apical regions of the cochlea, respectively. These anomalies were very pronounced at the 

base, and subtler at the apex of the cochlea (Figs. 2C, S5A-C). 

In wild-type mice, the tallest stereocilia of the OHC hair bundles are anchored in the TM, 

where they form characteristic V-shaped imprints at its lower aspect (Fig. 2D). These imprints 

provide a well-defined overall view of the shape of the OHC hair bundle’s anchor in the TM. In 

Nherf1-/- mice, these imprints were present, but they were severely mis-shaped for 90±5 % of 

OHCs at the cochlear base and only affected, and less strongly so, for 15±3 % of OHCs at the 

apex (Figs. 2D, S5D). Antibodies directed against stereocilin, a protein present at the interface 

between the tips of the tallest stereocilia of the OHCs and the TM, labeled the stereocilia 

imprints in the TM (Figs. 2D, S5E). This confirms that the anchoring of these stereocilia in the 

TM was normal, despite the abnormal shapes of the hair bundles. 

 

In Nherf1-/- mice, mild mid-high frequency threshold elevation contrasts with severely 

defective responses of the OHCs at the cochlear base 

We next analyzed the hearing sensitivity of Nherf1-/- mice at P21-P25 by measuring the 

thresholds of distortion-product otoacoustic emissions (DPOAEs) and auditory brainstem 

responses (ABR) to brief pure-tone stimuli in the 5-40 kHz frequency range (Fig. 3). There was 

no significant difference in DPOAE thresholds between Nherf1-/- (n=11) and wild-type (n=11) 

mice for primary tone frequencies in the 5-15 kHz range (p>0.99; Figs. 3A, S6A). By contrast, 

between 19 and 28 kHz, DPOAE thresholds in Nherf1-/- mice were higher than normal and 

approached the upper limit of detectability (Figs. 3A, S6A), and DPOAEs were undetectable at 

32 kHz in all mutant mice (Fig. 3B). The corresponding DPOAE threshold elevations were 

29.7±14 dB at 20 kHz and >47.5 dB at 32 kHz (p<0.0001; Fig. 3A). We also measured the 

cochlear microphonic potential (CM), which, being proportional to the sound-induced 
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transducer potentials of the OHCs of the basal-most cochlear region, is an indicator of their 

mechano-electrical transduction (5): the mean CM was 10 times smaller in Nherf1-/- mice 

(n=10) than in wild-type mice (n=10) (p<0.05, Fig. 3C), indicating a drastic decrease of OHC 

function in the cochlear base. The ABR thresholds of Nherf1-/- mice were within the normal 

range for tone-burst frequencies below 15 kHz (p>0.05 at 15 kHz), consistent with the normal 

DPOAEs in the low-frequency interval. Above 15 kHz, ABR thresholds were only moderately 

higher than in control mice (by 22.2±10 dB at 20 kHz and 35±12 dB between 32 and 40 kHz, 

p<0.0001) (Fig. 3D), at odds with the DPOAE defects. 

We analyzed the latencies of the first peak of the compound action potential (CAP) and 

its ABR wave-I correlate, which reflect the synchronous response of the auditory nerve to tone 

bursts. They depend on the propagation delay of the wave associated with the stimulus to the 

responding cochlear site. They also include intensity-dependent contributions from the local 

processing mechanisms in the sensory cells. In wild-type mice, CAP latencies in response to a 

10 kHz probe were between 2.02 ms at the ABR threshold and 1.28 ms at 105 dB SPL; at 32 

kHz, the range was from 1.70 ms at the ABR threshold to 1.15 ms at 105 dB SPL (n=10) 

(Fig. 3E). The difference in CAP latencies at a given sound level between 10 kHz and 32 kHz 

was consistent with the base-to-apex cochlea frequency map. In Nherf1-/- mice (n=10), the CAP 

latency plot at 10 kHz was similar to that for control mice (p>0.85, Fig. 3E): at 32 kHz, the 

CAP latency was between 1.97 and 1.31 ms, and thus in the same range as for 10 kHz tone-

bursts (Figs. 3E; S6B). Even at stimulus levels of 95 (p<0.01) and 105 (p<0.05) dB SPL, such 

that OHC function negligibly influences the timing and size of cochlear responses, CAP latency 

at 32 kHz remained at least 0.18 ms longer in Nherf1-/- than control ears (Figs. 3E; S6B).  

 

Masking tuning curves for mid-high frequency sounds display major shifts towards low 

frequencies in Nherf1-/- mice 

To examine further the functional status of basal OHCs in Nherf1-/- mice, masking TCs 

were used to measure their frequency selectivity (Fig. 4). Masking TCs show how the relative 

frequency distance between masker and probe frequencies shapes their interaction at the 

cochlear site where this interaction, and thus the masking effect, occurs. Probe frequencies 

were set either at 10 kHz, a frequency with normal ABR hearing thresholds (Fig. 3A,D), or 

between 20 and 40 kHz corresponding to frequencies at which cochlear responses were clearly 

affected in all Nherf1-/- mice (Fig. 3A,D). In the normal cochlea, the masking-TC dip lies close 

to that of the probe tone at the CF of the cochlear place at which the masker and probe tones 
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interact most efficiently, irrespective of the tested probe frequency (10, 27, 32, or 40 kHz; 

Fig. 4A). In Nherf1-/- mice at 10 kHz (n=12), masking TCs displayed a narrow dip near the 

probe frequency and a broad low-frequency tail, almost superimposed on those in Nherf1+/+ 

(n=12) mice (Fig. 4A). By contrast, for probe frequencies equal to or above 20 kHz (n=33), the 

masking TCs in Nherf1-/- mice were markedly abnormal: there were few dip-like minima 

around the probe frequency (Figs. 4A,B, S7A) and only for masker intensities exceeding 100 

dB SPL (Fig. S7A, right panel). Conversely, intense masking was systematically observed for 

masker tones of lower frequencies, with a mean of 12.7±5.3 kHz, such that the most efficient 

masker was 2.15 octaves below the probe with the highest frequency tested (40 kHz).  

Our calibration of the acoustic setup (Fig. S8A), and the masking TCs obtained in Nherf2-

/- mice (Figs. 4C, S8, S9), defective for another member of the Nherf protein family, rule out 

any possibility of participation of the spectral splatter to the shift of masking toward low-

frequency sounds. The low-frequency minimum of masking TCs in Nherf1-/- mice peaked for 

masker levels a mean of 15±11 dB lower than the probe tone, in some cases 25 dB lower 

(Fig. 4A,B). In each mutant, the frequency interval of this efficient masking was within the 

frequency range of its normal ABR and DPOAE thresholds (red background in Figs. 4A,B, 

S7A). For any single ear, masking TCs with probes of different frequencies between 20 and 40 

kHz, such that DPOAE thresholds at these frequencies exceeded 70 dB (n=7), systematically 

coincided within 5 dB of each other over the whole frequency range of tested maskers 

(Figs. 4B, S7A).  

In normal healthy ears, maximum masking occurs when the frequency of at least one of 

the two interfering sounds, the probe or the masker, coincides with the CF of the cochlear place 

where the masking effect is generated (2, 4, 6). In an active cochlea, the BM vibration for 

intermediate stimulus intensities (20-80 dB SPL) undergoes compressive amplification of its 

displacements solely at the CF place of the stimulus, where it increases by only about 0.3 dB 

per dB increase of sound level in the ear canal. By contrast, cochlear vibrations at places distant 

from the CF place, not influenced by OHC activity, increase linearly by 1 dB per dB (1). Which 

of the two sounds is at CF at the interference place should be revealed by its compressive 

behavior; this can be determined by measuring the increase of the masker intensity with 

increasing probe intensity (growth of masking, GOM) (6).  

In wild-type mice, when probe and masker frequencies were close to each other (20 and 

19 kHz, or 32 and 30 kHz, respectively), a paradigm referred to as 'on-frequency' masking, the 

GOM was about 1 dB per dB (Fig. S7B): both the probe and masker cochlear responses 

displayed similar compressed rates of increase at their interference place (20 kHz or 32 kHz CF 
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place, respectively) (6). In Nherf1-/- mice with normal ABRs at 10 kHz, a frequency at which 

on-frequency masking was efficient, the GOM was also about 1 dB per dB (Figs. 4D, S7B). 

We then examined masking when probe and masker are set at very different frequencies, 

e.g., 32 and 12.5 kHz respectively, referred to as 'off-frequency' masking. In Nherf1+/+ mice, 

the GOM was 0.35 dB per dB (n=10) for probe intensities between 30 and 65 dB SPL 

(Fig. 4D), and was slightly steeper above 65 dB SPL. This is coherent with the reported 

decrease in compression at increasing levels (1). In Nherf1-/- mice (n=12), the pattern of masker 

growth under the same stimulation conditions was reversed: the GOM was 2.2 dB per dB for 

probe intensities in the 50-65 dB SPL range (Fig. 4D). This inversed pattern indicates that the 

efficient low-frequency maskers undergo more compression than the probe sound that they 

mask, suggesting that maskers act near their own CF place. This raises questions about the idea 

that in the 50-65 dB SPL range (Fig. 4D), the place where the high-frequency probe stimulus 

elicits its CAP has a high CF (Table S1).  

  



	
   10	
  

DISCUSSION  

The hearing impairment in Nherf1-/- mice is characterized by a transition between normal 

low-frequency responses, below 15 kHz, and abnormal high-frequency responses above 15 kHz 

(Fig. 3A, C). Consistent with this, anomalies of OHC hair bundles are rare at the cochlear apex, 

more prevalent in the middle region of the cochlea, and involve 95% of OHCs at the cochlear 

base. The lack of Nherf1-mediated structural and signaling activities in these mutant mice 

probably results in slackening of stereocilia membrane tension, as suggested by the irregular 

shapes of OHC hair bundles. During hair bundle differentiation, cell intercalations and cell-cell 

junction remodeling concomitant with the convergent extension process are conspicuous at the 

cochlear base but are rare at the apex. This may explain the gradient of the prevalence of 

anomalies increasing from apex to base. The absence of high-frequency DPOAEs and the about 

10 fold reduction of CM potential amplitude in Nherf1-/- mice indicate an overall lack of 

activity of the basal OHCs. This is not consistent with the small magnitude of ABR threshold 

elevations above 20 kHz. The OHCs are believed to influence the sensitivity of the cochlear 

response by acting in a feedback loop, which amplifies cochlear vibrations, by up to 60 dB, 

when cycle-by-cycle OHC feedback occurs with the appropriate timing. Accordingly, a 60 dB 

increase in ABR thresholds in the high frequency range was expected in Nherf1-/- mice (1), such 

that the increase of 22-35 dB that was observed was surprising (Fig. 3). 

The apparent mildness of ABR threshold shifts in Nherf1-/- mice is also inconsistent with 

the substantial abnormality of their frequency selectivity. Modified masking TCs such that 

maximally efficient masking frequencies are below the probe frequency have already been 

reported in two conditions: the so-called “hypersensitivity of the tail” (7), and “off-frequency 

detection” (4). 

In the “hypersensitivity of the tail” cases, TCs of individual auditory neurons innervating 

IHCs at cochlear places where OHCs stereocilia or these cells themselves are absent, have no 

sensitive dip at CF and display abnormally great sensitivity in response to low frequencies (7). 

This hypersensitivity is attributed to increased shear motion of the TM, due to slackened 

coupling to the organ of Corti in the absence of functional OHC; this is believed to confer on 

the basal cochlea an increased sensitivity to low frequency vibrations (7). Comparison of 

abnormal neuronal TCs and normal reference TCs at similar CFs show that low-frequency 

responses emerge in such situations at levels 10-15 dB lower than normal (7-9). In the less 

severe condition in which OHCs are damaged yet still present, the dips of neuronal TCs are 

found near the normal CF and low-frequency tails with increased sensitivity are usually 

observed, the tail minimum being at about the same level as the dip. However, several of our 
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experimental findings in Nherf1-/- mice are not coherent with this established model. First, the 

masking of high-frequency probes by low-frequency maskers in Nherf1-/- mice is much 

stronger than reported for cases ascribed to hypersensitivity of the tail. Low-frequency maskers 

at levels 15 dB and sometimes 25 dB below the probe level on average exerted effective 

masking in Nherf1-/- mice, whereas tail levels for low-frequency interference in cases of 

hearing loss of other types are between 15 and 25 dB higher than the probe level (Figs. 4C, 

S8C); in cases of hypersensitivity of the tail as described elsewhere, masking should not occur 

at levels lower than probe level. Second, the frequency interval at which a hypersensitive tail is 

found should relate directly to the mechanical coupling of the TM to OHCs at the probe-CF 

place, where CAP responses to the probe are elicited. This is not the case in Nherf1-/- mice, in 

which probe frequencies could vary from 20 to 40 kHz with no influence on TC shapes or dip 

positions. Indeed, the TC shapes in a given ear seemed to be related to the low-frequency 

interval of normal auditory sensitivity in that ear. Thirdly, according to the hypersensitivity of 

the tail hypothesis, low frequencies exert their masking effect at the CF place of the high-

frequency probe. Whether or not OHCs are functional or not, it is generally believed that 

vibrations, far from their own CF place, can undergo neither amplification nor compression (1), 

and therefore the expected GOM should be lower than 1 dB per dB. It does not appear possible 

to reconcile the observed GOM in Nherf1-/- mice with this interpretative model. Finally, unlike 

in the case of the hypersensitivity of the tail (7), Nherf1-/- OHC hair bundles in are still 

anchored in the TM. 

The other hypothesis, off-frequency detection, mirrors the hypersensitivity of the tail 

model by positing that high-frequency probes near their ABR threshold (at levels < 65 dB SPL) 

are not detected at the place tuned to the probe itself but at the CF places of best maskers, i.e., 

within the normally sensitive and immediately apical cochlear region. In the typical case of a 

dead basal cochlear region, high-frequency probes are indeed detected at sensitive places not 

tuned to those probes but adjacent to the dead cochlear region (4). In Nherf1-/- mice, the GOM 

data in off-frequency settings show a 2.2 dB per dB slope, which indicates that the maskers, but 

not the probes, undergo compression; this implies that the places where masking occurs also 

actively process masker-induced vibrations (1) (Table S1). The unusual ability of low-

frequency maskers to act at levels up to 25 dB lower than the detection threshold of the high-

frequency probe provides further support to the notion that the probe is detected at places 

where the masker is amplified. In the case of dead cochlear regions, sensitive places just apical 

to a dead zone can still be reached by the traveling BM wave, but the probe intensity would 

usually have to exceed 70 dB SPL to overcome the strong apical-ward attenuation beyond the 

CF place (70 dB/octave; (10)). In Nherf1-/- mice, the masking TC dips could shift downward by 
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up to two octaves with neural responses to 32 or 40 kHz probe tone-bursts at 60 dB SPL being 

masked optimally by masker tones at 10-12 kHz (Fig. 4A), thus raising the critical issue of how 

high frequency vibrations could have reached the apical detection site as they could not have 

traveled along the BM. A mechanism of apical propagation other than Békésy’s BM traveling 

wave is presumably therefore operating in Nherf1-/- mice. This mechanism differs by its ability 

to spread medium-level high-frequency vibrations toward the cochlear apical region. Various 

modes of vibration have been detected in the cochlea, and they include a fast acoustic-pressure 

wave traveling in cochlear duct fluids (11), but which has little effect on hair bundle deflection. 

The latencies of the high-frequency ABRs of Nherf1-/- mice, if produced off-frequency by an 

acoustic-pressure wave, should be as short as in Nherf1+/+ mice. The Reissner membrane has 

recently been described to support the propagation of vibrations that contribute significantly to 

the excitation of the apical-most part of the cochlea (12). Recent ex vivo investigations of the 

viscoelastic properties of the TM suggest that it is possible for a wave to travel longitudinally 

along this membrane (13-15). If the in vivo properties are similar to those reported ex vivo, the 

features of the TM wave might allow it to propagate high-frequency vibrations to the apex of 

Nherf1-/- cochleas. IHC excitation requires the deflection of stereocilia bundles, and TM 

vibrations may cause such deflection even when the BM and reticular lamina do not vibrate. 

How can high-frequency waves propagate along the TM from basal places? Nherf1-/- 

mice have normal numbers of OHCs in the basal region that, strikingly, display persistent 

mechanical coupling to the TM (Fig. 2). Consequently, passive vibrations of the basal BM 

might be transmitted to the TM. Normally, vibrations of the reticular lamina differ in amplitude 

and timing from those of the BM and both display rapid phase changes in the longitudinal 

direction near CF, due to OHC mechanical feedback (16); this likely hampers the efficacy of 

any leak to the TM in wild-type conditions. In Nherf1-/- mice with defective basal OHCs, one 

would expect BM motion, although weak, to occur in phase with the reticular lamina over a 

broad region, which may act as a beamforming mechanism resulting in significant TM motion. 

Ex vivo, TM waves undergo little attenuation over hundreds of µm and travel at 3-6 m/s, in a 

smooth frequency- and place-dependent manner (13). This would translate into a ∼0.4-ms 

travel time between the places with CFs at 40 and 10 kHz, which is consistent with the 

observed shift in wave-I latencies of ABRs to high-frequency tone-bursts in Nherf1-/- mice 

(Fig. 3E). The off-frequency detection model would also account for the need for on-frequency 

maskers to be about 40 dB more intense than the 20 and 32 kHz probes, because the interaction 

between these probes and maskers is assumed to occur apically at places tuned to the best 

maskers, and which respond nonlinearly only to sounds near their CF. The only possible 

masking mechanism would be the line-busy mechanism by which the masker saturates the 
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neuronal activity and swamps the transient probe-induced activity (17); this requires the masker 

to be about 40 dB more intense than the probe.  

In summary, the off-frequency detection mechanism can account for the results we 

report in Nherf1-/- mice without any need for altering the basic tenets of cochlear mechanics. 

We propose that a mode of propagation along the TM that has been described in vitro may 

extend abnormally in the apical direction via the persisting coupling between inactive OHCs 

and the TM. In patients with a similar abnormality, this would bias the interpretation of 

audiometric evaluation by suggesting a misleadingly mild high-frequency hearing 

impairment. This would in turn affect the hearing-aid fitting procedure. The detection of 

medium-level high-frequency sounds despite a severely damaged cochlear base may provide a 

beneficial natural frequency transposition, akin to that implemented by hearing aids that 

numerically displace inaudible high-frequency components to a mid-frequency interval to 

which the ear remains more sensitive. However, our findings in Nherf1-/- mice suggest that 

transposed information is so vulnerable to interference from low-frequency sounds that 

patients are likely to have major difficulties hearing in noisy environments, inconsistent with 

a hearing impairment misdiagnosed as ‘mild’. Therefore, screening for this newly identified 

type of cochlear dysfunction is essential for appropriate clinical evaluations of patients with 

hearing disorders. Our study indicates that this problem could be identified by systematic 

screening for inconsistency between ABR and DPOAE measurements, and that abnormal 

psychophysical masking test results would reveal the unusual detrimental impact of low-

frequency sounds. Finally, this work identifies two new mouse deafness genes, Slc9a3r1 

(Nherf1) and Slc9a3r2 (Nherf2), which are likely to be responsible for hearing impairment 

also in humans. 
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Materials and methods 

A detailed description of the methods is available in supplementary data. Nherf1-/-, 

Nherf2-/-, and Cdh23v2j/v2j mice were used. Immunofluorescence analysis, study of the 

structure of the auditory hair cells by light and scanning electron microscopy, and the in vivo 

measurements for physiological analysis were performed (see supplementary data). 

Experiments with animals were carried out using protocols approved by the Animal Use 

Committee of INSERM and Institut Pasteur. 
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Figure legends 
 

Fig. 1: Nherf1 in the mouse auditory hair cells  

(A) Nherf1 immunostaining is detected on embryonic day 16 in the stereocilia of IHCs and 

OHCs. After birth (P0 and P12), Nherf1 was detected only in OHC hair bundles. Nherf1 

labeling was intense at the tips of the differentiating stereocilia. (B) Nherf1 and cadherin-23 

colocalized at the stereocilia tips. (C) On P5, Nherf1 labeling was weaker in the stereocilia of 

hair cells, but not in the supporting cells (arrows in B and C), in Cdh23v2j/v2j mice than in 

controls. Bars=5 µm. 

 

 

Fig. 2: Abnormal OHC hair bundle shapes in Nherf1-/- mice 

(A,B) In Nherf1-/- mice, the shapes of the OHC hair bundles are abnormal mainly in the basal 

cochlear region: wavy, linear and hooked shapes are observed. (C) Abnormally shaped OHC 

hair bundles (light and dark greens, lower panels) and normal, V-shaped hair bundles (blue) 

were counted in each cochlear region (basal, middle, apical) in Nherf1-/- and wild-type mice: 

in Nherf1-/- mice, 80±5 % of OHCs in the cochlear basal region displayed abnormal hair 

bundle shapes. (D) In Nherf1-/- mice (lower panels), OHC imprints on the TM at the cochlear 

base (also labeled by anti-stereocilin antibodies, green) predominantly correspond to mis-

shaped arrays of OHC stereocilia. Bars=1 µm. 

 

 

Fig. 3: Hearing impairment at mid-high sound frequencies in Nherf1-/- mice 

(A-D) DPOAEs, CM potentials, and ABRs in P20-P25 wild-type (black), and Nherf1-/- (red) 

mice. (A) DPOAE thresholds (±sd) at and above 20 kHz are significantly higher in Nherf1-/- 

mice than in wild-type mice. (B) The DPOAEs (±sd) at 32 kHz are indistinguishable from 

noise background in Nherf1-/- mice (red, downward-pointing arrows; n=11). In these cases, 

DPOAE thresholds were arbitrarily set at 75 dB SPL, the highest intensity stimulus tested. (C) 

The amplitude of the CM potential for a 10 kHz tone burst stimulus (±sem), measured at the 

round window, was significantly smaller in Nherf1-/- mice (n=10) than in control (n=10) mice. 

(D) Beyond 15 kHz, the ABR thresholds (±sd) were significantly higher in Nherf1-/- mice than 
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in control littermates. (E) ABR wave-I timing at 10 and 32 kHz as a function of stimulus 

sound level in Nherf1-/- mice. For 10 kHz tone-burst sound stimuli, average ABR wave-I 

latencies (±sd) did not differ between wild-type (black dashed line) and Nherf1-/- mice (red 

dashed line), regardless of the strength of the stimulus. The latency of the 32 kHz ABR-wave 

I for Nherf1-/- mice (red plain line) was shifted upward by 0.4 to 0.6 ms relative to that for 

wild-type mice (black plain line) between 45 and 85 dB SPL. *, ** and *** denote p<0.05, 

p<0.01 and p<0.001, respectively. (ns) not significant. 

 

Fig. 4: Abnormally efficient masking of mid-high frequency sounds by lower frequency 

sounds in Nherf1-/- mice 

(A) For a low frequency probe tone (10 kHz) (left graphs in the left panel), the masking TC 

recorded in a Nherf1-/- mouse did not differ from that in a wild-type mice. The most efficient 

masker (dip of the V-shaped curve) was at or near the probe frequency and within 10 dB of the 

probe intensity (see ABR thresholds curve). For mid-high frequency probe tones (27 (blue), 32 

(green) and 40 (orange) kHz), the efficient masking (the dip of the TC) was shifted towards low 

frequency sounds (light red background), on average at 12.5 kHz in the Nherf1-/- mice (right 

panel). (B) Scatterplots of the most efficient masking frequency (TC dip frequency) as a 

function of probe frequency in wild-type (grey to black dots) and Nherf1-/- (colored dots) mice. 

Colored lines connect data points collected in the same ear at the different probe frequencies as 

indicated. In Nherf1-/- mice (n=12), the efficient masking for mid-high frequency sounds 

(beyond 20 kHz) was shifted towards low frequency sounds (light red background). (C) For a 

20 kHz probe tone in Nherf2-/- mice, the most efficient masking (still centered near the probe 

frequency) was at higher levels than for wild-type mice. (D) Growth of masking (GOM) curves 

for off-frequency conditions (signal at 32 kHz and masker at 12.5 kHz). In the intermediate 

range of probe tone-burst intensities (yellow zone), the slope of the GOM curves for wild-type 

mice was shallow (0.35 dB per dB, n=10), and that for Nherf1-/- mice was much steeper (2.2 dB 

per dB, n=12). The large GOM allowed compression measurements to be made with probe 

tone-burst levels not exceeding 65 dB SPL (yellow zone), which kept the risk of spectral 

splatter under control. 
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I- Legends to the supplementary figures S1-S9 

 

Fig. S1: The auditory sensory organ and the hair bundle, the sound-receptive structure 

of sensory hair cells 

(A) The inner ear (upper left panel) contains the vestibule (balance organ), and the cochlea 

(auditory organ). Running from the base to the apex of the cochlea, the auditory sensory 

epithelium lies on the basilar membrane. The lower left panel illustrates the frequency-place 

(tonotopic) map on an F-actin-labeled (red) mouse cochlea. In the auditory sensory epithelium 

(lower right panel), sensory inner hair cells (IHCs) are organized into a single medial-side row 

and outer hair cells (OHCs) into three lateral-side rows. A mechanosensitive hair bundle, 

made of 50 to 300 actin-filled rigid microvilli, known as stereocilia, crowns the apical surface 

of each hair cell (upper right panel). The tectorial membrane, anchored to the spiral limbus, 

overlies the sensory epithelium, and is in contact with the tallest stereocilia of OHCs. (B) In 

the developing hair bundle, a single transient primary cilium, the kinocilium, is located 

towards the periphery of the hair bundle, attached to adjacent stereocilia of the tallest row by 

the kinociliary links (KL). The stereocilia are connected by early lateral links (ELL), and 

ankle links (AL). These transient lateral links are subsequently replaced by the top connectors 

(TC) in the outer hair cells. The right panel is a magnification of the apical regions of 

stereocilia from the middle and tall rows of a mature hair bundle. Cadherin-23 and 

protocadherin-15 form the tip-link, a major component of the mechano-electrical transduction 

(MET) machinery. These proteins interact with other proteins —proteins including 

myosin VIIa, harmonin and SANS, that are defective in cases of Usher syndrome of type I— 

at each tip-link insertion point. The MET channels are located at the tips of stereocilia of the 

short and middle rows. 

 

Fig. S2: Nherf1 and cadherin-23, the protein defective in Usher syndrome type 1D 

(A) Modular structures of cadherin-23 (bait) and Nherf1 (prey). The position and domain 

structure of the yeast two-hybrid bait, the cytodomain of murine cadherin-23 containing the 
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fragment encoded by exon 68, and the three independent Nherf1-prey clones isolated are 

indicated. The common region of three independent prey clones (aa 1-165) is predicted to 

encode the N-terminal region of Nherf1/ Ebp50. Nherf1 contains two PDZ domains, an ERM-

binding (EB) domain, and a C-terminal class-1 PDZ-binding motif (asterisk). (B) Nherf 

family members. Nherf1 belongs to a family of four PDZ domain-containing adaptors 

(Nherf1-Nherf4). Nherf1 and Nherf2 are both composed of two PDZ domains, and an ERM-

binding domain that links the proteins to the cytoskeleton. Nherf3 and Nherf4 contain four 

PDZ domains without any additional regulatory or interaction domains. All Nherf proteins 

have a C-terminal class-1 PDZ-binding motif (asterisk). (C) Co-immunoprecipitation assays. 

Co-transfected HEK293 cells producing either the V5-tagged Nherf1 and myc-tagged 

cadherin-23 cytodomain, or the V5-tagged Nherf1 and the myc-tagged radixin were used for 

co-immunoprecipitation experiments. The V5-tagged Nherf1 (top) and myc-tagged cadherin-

23 cytodomain were co-immunoprecipitated by the anti-V5 antibody. The Nherf1-radixin 

interaction serves as a positive control. (D-F) Nherf1 and the cadherin-23 cytodomain in the 

polarized LLC-PK-CL4 epithelial cells. (D) In co-transfected CL4 cells producing Nherf1 and 

the entire cytoplasmic region of cadherin-23 (Cdh23cyto), the two proteins were co-located in 

the apical microvilli. (E) In cells producing V5-tagged Nherf1 and a truncated form of 

cadherin-23 cytodomain that lacks the last nine amino acid residues (Cdh23cytoΔ9), the two 

proteins were not co-located; therefore the interaction probably involves the C-terminal PDZ-

binding motif of cadherin-23. (F) CL4 cells were co-transfected with constructs encoding 

Nherf1 and an hEcadCdh23cyto chimera, composed of the five extracellular cadherin repeats 

(EC) and transmembrane domain (TM) of the human E-cadherin (hEcadherin) fused to the 

intracellular domain of the human cadherin-23 (cadherin-23cyto). In these cells, Nherf1 

accumulated at the cell-cell junctions together with hEcadCdh23 (arrows), but not elsewhere 

at the plasma membrane (arrowheads). The schematic diagrams in (D-F) illustrate the domain 

structure of the fragments produced in CL4 cells.  Bars=10 µm. 

 

Fig. S3: Nherf1 spatio-temporal distribution in the auditory sensory epithelium 

(A) The specificity of Nherf1 immunolabeling (green) in the hair bundles. The 

immunolabeling of the stereocilia observed in wild-type mice is absent from Nherf1-/- mice 

(right panel) and is therefore specific for Nherf1. (B) Cochlear sensory epithelia stained for 

Nherf1 (green) and F-actin (red). At embryonic stages (E15.5, E17, and E18), Nherf1 

immunolabeling was detected in the hair bundles of both inner hair cells (IHC) and outer hair 

cells (OHC). At E15.5, Nherf1 was detected in the actin-rich protrusions that grow on top of 
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the newly differentiated hair cells; similar Nherf1 distributions were also observed at E17.5 

and E18.5 in the stereocilia of IHCs, OHCs, and in the microvilli of surrounding supporting 

cells. On early postnatal days (P0, P3, P5), the protein was no longer detected in IHCs, but the 

immunoreactivity in the OHC hair bundles increased. Nherf1 immunolabeling was strong at 

the tips of the stereocilia. This was confirmed by post-embedding immunogold labeling 

experiments: on E18, the Nherf1-specific gold particles were mainly detected in the apical 

half of the differentiating stereocilia (upper right panel). The microvilli of surrounding 

supporting cells were also intense immunolabeled for Nerf1 (arrows in bottom right panel). 

(C) Isolated OHCs illustrating the strong Nherf1 immunolabeling in the apical regions of the 

stereocilia (left panels). The immunolabeling of Nherf2, another member of the Nherf family, 

was stronger in the stereocilia basal region (right panels). 

Bars=5 µm, 250 nm (upper right panel in B). 

 

Fig. S4: Abnormal hair bundle shapes and mispositioned kinocilium in the OHC hair 

bundles of Nherf1-/- mice 

(A-D) Top views of cochlear whole-mounts from wild-type and Nherf1-/- mice (scanning 

electron microscopy).  (A) The shape of OHC hair bundles in Nherf1-/- mice is severely 

abnormal, as shown from P3 to P8. Instead of the V-shaped hair bundles in wild-type mice 

(left panels in A), asymmetric OHC hair bundles, with misaligned stereocilia rows, are 

observed in Nherf1-/- mice. (B) Left panel: the numbers of stereocilia per OHC hair bundle 

were not significantly different between Nherf1-/- and wild-type animals (p>0.05). Right 

panels: the lateral links that connect adjacent stereocilia in their apical (upper) and basal 

(lower) parts at P3 are preserved in Nherf1-/- hair bundles. (C) Mispositioned kinocilium in the 

OHC hair bundles in the cochlear basal region of Nherf1-/- mice. Upper panels: The upper 

schematic representation illustrates hair bundle orientation and the method used to measure 

the angular deviation of the kinocilium with respect to the planar cell polarity (PCP) axis. 

TRITC-phalloidin was used to label the stereocilia (red), and an anti-acetylated tubulin 

antibody to label the kinocilia (green). In the scanning electron micrographs (right panels), 

kinocilia were artificially labeled in green to facilitate visualization. Lower panels: The mean 

absolute deviations (± sem) of the kinocilia in the three rows of OHCs were between 12±1° 

and 18±1° in Nherf1-/- mice, and between 5±1° and 9±2° in wild-type mice. In wild-type mice, 

58% of the kinocilia were within 7° of the PCP axis; in Nherf1-/- mice, only 26% of the 

kinocilia were within 15° of the PCP axis. Bars=1 µm (A, B), 5 µm (C). ** and *** denote 

p<0.01 and p<0.001, respectively (Student’s t test). 
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Fig. S5: Abnormal OHC hair bundle shapes and TM imprints predominate in the 

cochlear basal region in Nherf1-/- mice  

(A-C) Various abnormal shapes of the OHC hair bundles are observed in Nherf1-/- mice: they 

include wavy (red), linear (yellow) and hooked (green) hair bundles. (B) Examples of wild-

type and Nherf1-/- hair bundles, illustrating the anomalies of OHC, but not IHC hair bundle 

shapes in Nherf1-/- mice. (C) At the cochlear apex of Nherf1-/- mice, the shapes of few OHC 

hair bundles were affected and only mildly, whereas most of the OHC hair bundles at the 

cochlear base were mis-shaped. (D, E) Imprints of the tallest OHC stereocilia in the tectorial 

membrane (TM). (D) Upper panels: In Nherf1-/- mice, almost all of the OHC imprints 

(90±5 %, see lower left panels) in the lower face of the TM in the cochlear basal region were 

mis-shaped (green in the histograms), whereas only 15±3 % were abnormal in the cochlear 

apical region, and in these cases the anomalies were minor (lower right panels). (E) Labeling 

of the stereocilia imprints of the three OHC rows of in the TM using an anti-stereocilin 

antibody (green) shows the abnormal imprints in Nherf1-/- mice. 

Bars=5 µm (A, C), 1 µm (B, D, E). 

 

Fig. S6: Distortion product otoacoustic emissions (DPOAEs) and ABR recordings in 

Nherf1-/- mice  

(A) Distortion product otoacoustic emissions (DPOAEs) in P20-P28 wild-type (black) and 

Nherf1-/- (red) mice. Tests were carried out before P30 to avoid any interference from age-

related high frequency hearing loss. DPOAEs for 10 kHz and 20 kHz tone stimuli are shown. 

DPOAE amplitudes in Nherf1-/- mice, within the normal range at 10 kHz, were significantly 

lower than normal at 20 kHz. (ns) and *** denote no statistically significant difference, and a 

significant difference with p<0.0001, respectively (2-way ANOVA). (B) Examples of ABR 

recordings at 10 kHz (75 dB SPL) in a wild-type mouse, and at 32 kHz in wild-type (at 75 dB 

SPL) and Nherf1-/- (at 75 and 95 dB SPL) mice. The latency of the 32 kHz ABR-wave I 

(arrows) in the Nherf1-/- mouse jumped from 1.60 to 1.25 ms when the stimulus level 

increased from 75 dB SPL (light red trace) to 95 dB SPL (dark red trace), but nevertheless 

remained 0.20 ms longer than the wave-I latency at 32 kHz, 75 dB SPL in a wild-type ear and 

was more similar to the wave-I latency at 10 kHz in this control ear (blue trace).  

 

Fig. S7: Masking tuning curves (TCs) in wild-type, Nherf1-/-, and Nherf2-/- mice 

(A) Examples of masking tuning curves (TCs) for 20 kHz (left panels), and 32 kHz and 40 
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kHz (middle panels) probe tones in P20-P25 wild-type and Nherf1-/- mice. The TCs represent, 

against masker frequency, the smallest intensity of the masker able to decrease by half the 

compound action potential elicited in the auditory nerve by a probe tone-burst at 5-10 dB 

above the ABR threshold. In the wild-type mouse (upper panels), the TCs display a 

characteristic narrow V-shaped dip corresponding to the most efficient masker tone at or near 

the probe frequency (20, 32 or 40 kHz), and near the probe intensity. The shallow slope of TC 

curves toward lower frequencies defines a broad low-frequency tail, in which masker tones 

have to be 30-50 dB above the probe intensity to exert masking. By contrast, in the Nherf1-/- 

mouse (lower panels), hardly any masking was present for masker frequencies around the 

probe tone at 20 kHz, 32 kHz or 40 kHz. Only in some but not all Nherf1-/- mice, a dip-like 

minimum around the probe frequency (32 kHz) was observed for a 32 kHz masker, but with 

intensities exceeding 100 dB SPL (bottom right panel). In all these mutant mice, the most 

efficient masker (dip of the V-shaped curve) was in the lower frequency interval, between 7 

kHz and 14 kHz. The most efficient masker for both 32 kHz and 40 kHz probe tones in a 

given ear was at the same frequency, 12.5 kHz in the example shown in the bottom middle 

panel. Furthermore, the two TCs coincided within 5 dB over the whole masker-frequency 

range. (B) Growth of masking curves experiments. Average ratios (±sd) of growths of masker 

and probe tones (in dB per dB) in wild-type and Nherf1-/- mice, when probe and masker 

frequencies were similar (on-frequency) or very different (off-frequency). The on-frequency 

configuration cannot be tested in Nherf1-/- mice because masking starts appearing only at 

masker intensities > 100 dB SPL. Individual growth-of-masking plots are depicted in Fig. 4A.  

 

Fig. S8: The acoustic source of a 32 kHz tone-burst stimulus, and the auditory 

characteristics and masking tuning curves in wild-type, Nherf1-/-, and Nherf2-/- mice 

(A) Tone-burst stimuli at high frequencies and related spectral splatter. We tested the 

acoustic source of the high-frequency probe stimuli for the presence of low-frequency spectral 

splatter: by eliciting ABR responses in the normally sensitive low-frequency cochlear region of 

Nherf1-/- mice, this could account for the observed shift of masking toward low frequencies. 

The frequency spectrum of a 32 kHz tone-burst measured in situ by a calibration microphone is 

represented in orange. The level of the main peak at 32 kHz serves as a reference (0 dB) for the 

vertical dB scale. The average difference between ABR thresholds at the measured frequency at 

32 kHz in Nherf1-/- mice is presented in red, and that in the Nherf1-/- most extreme ear among 

those tested is in blue. Analysis of the frequency spectrum revealed a low-frequency onset 

artifact in the 6-14 kHz frequency interval (asterisk above orange line), 45 dB below the level 
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of the main 32 kHz tone-burst regardless of intensity of the sound, too small to elicit spurious 

ABR responses (similar data were collected at 20 kHz). Thus, the spectral splatter cannot 

contribute to the measured 32 kHz-ABR thresholds even at 10 kHz, at which spectral splatter 

remains 12 dB too weak on average (and 2-dB too weak, in the less favorable ear) to produce 

any ABR. When the level of the 32-kHz tone-burst is well in excess of 65 dB SPL, the small 

artifactual ABR contributions possibly generated in cochlear regions tuned to low frequencies 

are likely overwhelmed by those produced by the main tone burst at its CF place, which will be 

stimulated well above threshold. (B) Difference in dB between thresholds at frequencies > 15 

kHz and threshold at 15 kHz, for ABR (plain lines) and DPOAEs (dashed lines), in Nherf1-/- 

(red lines) and Nherf2-/- (green lines) mice. The DPOAE thresholds were more severely 

affected in Nherf1-/- (dashed red line) than in Nherf2-/- mice (dashed green line). However, the 

changes in ABR thresholds at increasing tone-burst frequencies were similar in the two mouse 

mutants, such that they are similarly sensitive to the biasing effect on ABR thresholds of a 

hypothetical low-frequency spectral splatter affecting the spectra of high-frequency tone-bursts 

(20 kHz and above). (C) The same acoustic setup was used to establish the masking tuning 

curves (TCs) in Nherf1-/- and Nherf2-/- mice. Unlike the masking TC for Nherf1-/- mice (lower 

left panel, same as S7A), the masking TC for Nherf2-/- mice (lower right panel) was centered 

near the probe frequency, and all changes in their characteristics followed the conventional 

pattern: for a 32 kHz probe, the TC dip was enlarged and elevated but remains near the probe 

frequency and the low-frequency tail was sensitive as in controls. The masker threshold 

intensities in the tail region were about 15 dB higher than those in the dip frequency interval. 

These observations are consistent with acoustic calibration, and rule out any possibility of 

participation of low-frequency transient artifacts of the acoustic stimulus in the functional 

pattern and masking TCs of Nherf1-/- mice. 

 

Fig. S9: Spatio-temporal distribution of Nherf2 in cochlear hair cells, and OHC hair 

bundle architecture in Nherf2-/- mice 

(A) The distribution of Nherf2 in the auditory sensory organ was analyzed at embryonic and 

postnatal stages. Nherf2 immunostaining (green) was detected as early as embryonic day 

E15.5 in the emerging stereocilia of both IHCs and OHCs. The staining was more intense at 

post-natal stages (P0, P5, and P15, and P90), especially in the stereocilia of IHCs. Most 

Nherf2 staining was located in the stereocilia basal region, as shown in an IHC hair bundle at 

P90 (right panels). (B) The specificity of the Nherf2 immunolabeling (green) in the hair 

bundles (F-actin labeling, red) of the wild-type mice was confirmed by its absence from 
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Nherf2-/- mice. (C) Scanning EM analysis of the OHC hair bundles in Nherf2-/- mice. At early 

post-natal stages (P5-P7), the OHC hair bundle shapes in Nherf2-/- mice were approximately 

normal, and similar to those in wild-type mice. However, some abnormally shaped OHC hair 

bundles were present at post-hearing stages, as illustrated here on P21 (arrows). Despite 

missing or fused stereocilia in the short and middle rows of some hair bundles in P21 Nherf2-/- 

mice, the OHC imprints on the lower surface of the TM are roughly normal all along the 

cochlea (see upper right panel). Bars=1 µm.  

 

Supplementary Table S1: 

 

Table S1: Nherf1-/- mice, off-frequency situation, probe at 32 kHz; maximally efficient masker 

at ∼12.5 kHz 

Interpretative 

framework 

True probe 

frequency 

CF at place of 

interference 

Compression 

of probe 

Compression 

of masker 

Expected 

GOM 

 

Spectral splatter 

 

12.5 kHz 

 

12.5 kHz 

 

+ 

 

+ 

 

1 dB per dB 

 

Tail 

hypersensitivity 

 

 

32 kHz 

 

32 kHz 

 

+ 

 

0 

 

0.3 dB per dB 

 

Off-frequency 

detection 

 

32 kHz 

 

∼12.5 kHz 

 

0 

 

+ 

 

∼ 3 dB per dB 

 

Note: If the presumed off-frequency detection occurs over a broad cochlear region, for 

example because the mechanism of apical propagation at its origin has little frequency 

specificity, efficient maskers may act despite not corresponding exactly to the CF, as CFs in 

the region of interference span a broad range. Consequently, maskers would not be 

compressed at the maximum rate and the GOM would be less than the inverse of the 
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maximum compression rate, thus, < 3 dB per dB. On the basis of this reasoning, the only 

interpretative framework that can explain the GOM data is off-frequency detection, unless tail 

hypersensitivity in Nherf1-/- mice is due to a novel type of OHC dysfunction such that places 

with normally high CFs both respond much better to low frequencies than to the CF and 

actively process low-frequency sounds in such a way that compression happens at low 

frequencies while no longer happening at the CF. However, the currently available evidence 

overwhelming suggests that compression requires functionally operating OHCs and is 

restricted to frequencies near the CF (1). 
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II- Supplementary materials and methods: 

Subtractive inner ear cDNA library and yeast two-hybrid screening  

To isolate genes preferentially expressed in hair cells, cDNAs from the sensory 

epithelia of P0-P4 mouse vestibular end organs were subtracted with cDNAs from the non-

sensory cartilaginous and membranous parts of the P0-P4 semi-circular canals, and with P2 

liver and P15 dorsal root ganglion cDNAs; a modified RDA (representational difference 

analysis) technique was used as described elsewhere (2).  

For the yeast-two hybrid screening, the intracellular region of cadherin-23 (NM-

022124; amino acid residues 3086-354) that includes the 35 amino acid residues encoded by 

exon 68 was used as a bait to screen a cDNA library derived from microdissected vestibular 

sensory epithelia of P2 to P6 mice (3). 

 

DNA constructs  

A cDNA encoding the full-length Nherf1 (NM_012030) was obtained from the mouse 

inner ear cDNAs, and inserted into the pcDNA3.1 vector. The cDNAs encoding fragments of 

cadherin-23 were transferred into appropriate vectors as follows. The cDNA encoding the 

intracellular region of the cadherin-23 isoform that contains the exon 68-encoded fragment 

(CDH23+ex68, NM-022124; amino acid residues 3086-3354) was inserted into pCMV-

tag3B; and the recombinant cDNA encoding a chimera composed of the extracellular and 

transmembrane domains of human E-cadherin fused to the cytoplasmic domain of human 

cadherin-23 lacking the alternative exon 68-encoded fragment (NP_001165405, amino acid 

residues 847-079) was ligated into pCDNA3.1 (3). A QuikChange XL site-directed 

mutagenesis kit (Stratagene) was used to delete the segment encoding the last nine amino acid 

residues of CDH23+ex68 (pCMV-tag3B). 

 

Immunofluorescence and electron microscopy analyses 

 The distribution of Nherf1 was studied in RJ Swiss mice (Janvier Labs, France). 

Embryonic day 0 (E0) was determined by vaginal plug detection, and the day of birth was 

defined as P0. Nherf1-/- mice (C57BL/6J background) (4), Nherf2-/- mice (5), and Cdh23v2j/v2j 

mice (6) were used. Experiments with animals were carried out using protocols approved by 

the Animal Use Committee of INSERM and Institut Pasteur. 
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LLC–PK1–CL4 cells derived from pig kidney (gift from J.R. Bartles, Northwestern 

University Feinberg School of Medicine, USA) were used as previously described (7). 

Samples (whole mount preparations of the organ of Corti, cryosections, isolated hair cells, or 

LLC-PK cells on glass coverslips) were processed for immunofluorescence as previously 

described (8). Briefly, after blocking in 20% goat serum in phosphate-buffered saline (PBS), 

and overnight incubation with the primary antibody, sections were rinsed in PBS, incubated 

with appropriate secondary antibodies for 1 hour at room temperature, and counterstained 

with DAPI. Images were collected using a Zeiss LSM510 Meta confocal microscope. 

 For scanning electron microscopy, inner ears were fixed in 2.5% glutaraldehyde in 0.1 

M phosphate buffer (pH 7.3) for 2 hours at room temperature. The samples were washed 

several times with the buffer alone, and cochlear sensory epithelia were finely dissected and 

processed using the osmium tetroxide/thiocarbohydrazide (OTOTO) method, as previously 

described (9).  

 For immunoelectron microscopy, fixed specimens were incubated in pure LR White 

overnight at room temperature, processed as described (6), and studied under a transmission 

electron microscope (H-7100, HITACHI, Japan). 

The anti-Nherf1 polyclonal antibody (Abcam) was raised against an internal peptide 

(amino acid residues 286-302) located between the PDZ2 and EB domains of the human 

protein. Its specificity was verified by immunofluorescence experiments using Nherf1-/- mice 

as negative controls (Supplementary Fig. S2).  

 The following primary antibodies were used: affinity-purified rabbit polyclonal 

antibodies against cadherin-23 (3), anti-stereocilin (10), anti-Nherf2 (HPA001672, Sigma), 

mouse anti-acetylated tubulin (Sigma), and mouse anti-V5-tag (Invitrogen). TRITC-

phalloidin (Sigma) and DAPI (1 µg/ml; Sigma) were used to label F-actin and cell nuclei, 

respectively. 

 

Kinocilium deviation analysis  

The deviation of the kinocilium in the outer hair cells at the cochlear base was 

determined by measuring the angle formed by two crossing lines as described previously (6). 

The first line was drawn mediolaterally along the symmetry/PCP axis of the cell, thereby 

running through the expected position of the kinocilium. The second line was drawn between 

the center of the hair cell surface and the observed position of the kinocilium. Data were 
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analyzed with the Excel software (Microsoft Office), and Student’s t-test was used to 

determine the statistical significance of differences.  

 

In vivo auditory tests 

To test hearing, distortion product otoacoustic emissions (DPOAEs), auditory 

brainstem responses (ABRs), cochlear microphonic (CM) electrical potential, and compound 

action potentials (CAPs) were recorded in anesthetized mice, and analyzed as described 

elsewhere (10, 11). Animals were anesthetized with a mixture of ketamine (150 mg/kg) and 

levomepromazine (2 mg/kg), with additional half doses given every 30 min. Their 

temperature was kept at 37 °C with a regulated heating blanket. 

 For DPOAE measurements, f1 and f2 stimuli were carefully applied through different 

earphones and tubing to avoid nonlinear interactions on earphone membranes. Only the cubic 

difference tone at 2f1-f2, the most prominent one from the ear (12), was detected. This 

DPOAE comes mainly from the place where there is maximum overlap between basilar 

membrane vibrations to f1 and f2, i.e., near the place tuned to f2. Therefore, the 2f1-f2 DPOAE 

was plotted against f2. The f2 frequency was swept from 5 to 32 kHz in 1/8th octave steps, with 

f1 chosen such that the frequency ratio f2/f1 was 1.20. The intensities of the two tonal stimuli 

at f1 and f2 were the same, from 20 to 80 dB SPL in 5 dB steps. We used an IHS system (IHS, 

Miami, FL, USA) driven by SmartOAE software (IHS) in the growth-function mode, between 

5 and 32 kHz. Measurements were extended above 32 kHz, to f2 = 40 kHz, using a pair of 

waveform generators (Wavetek 70), and the resulting sound in the ear canal was collected by 

the IHS microphone, while the 2f1-f2 DPOAE amplitude was measured by an FFT analyzer 

(OnoSokki). The DPOAE threshold was defined as the weakest stimulus eliciting a DPOAE 

significantly above the background noise level, estimated from the spectral lines closest to 

2f1-f2 in the 0.5 s sound samples collected in the ear canal. 

 For CAP measurements, a Teflon-coated silver-wire electrode was surgically inserted 

into the round-window niche, with the negative and ground electrodes subcutaneously placed 

on the skull and neck regions. The electrocochleogram was collected by a Grass preamplifier 

(gain x10,000) and numerically averaged (CED 1401+ processor) in synchrony with the 

stimulus (x32). For ABR recordings, three steel electrodes were inserted (negative and ground 

as for CAP measurements, and the positive in the mastoid region). The electroencephalogram 

was collected by the preamplifier with a x100,000 gain, and numerically averaged over 256 

epochs. 
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 The acoustic system that generated the tone-bursts for ABR and CAP measurements 

was controlled for the spectrum and level of onset and offset transient artifacts. These artifacts 

arise whenever a short, high-frequency voltage burst at frequency f drives an earphone. In ears 

with a large difference in sensitivity between high- and low-frequency regions, the low-

frequency spectral splatter induced by these transients must not be large enough to trigger 

synchronous neuronal responses from the cochlear region tuned to low frequencies. If, at the 

same time, the energy of the main spectral peak at f does not exceed the threshold of the 

cochlear place tuned to it, the ABR and CAP would represent responses to the low-frequency 

artifact, and thus not be representative of the cochlear sensitivity to f. Likewise, masking TCs 

would display a dip at low frequencies, because low-frequency maskers would be most 

efficient at masking an artifactual CAP. 

For both ABRs and CAP, the sound stimuli used were tone-bursts produced by a 

Wavetek-70 arbitrary waveform generator (2-period rise and decay times, 16-period plateau) 

and sent to a Radioshack tweeter (40-1376, 8 Ohm – 70 W) connected to a conical tip. Tone-

burst frequencies were in the range 5 to 40 kHz. At every frequency, the threshold-searching 

procedure could apply sound intensities from 10 to 115 dB SPL in 2 to 5 dB steps. In situ 

measurements of this setup (probe microphone PCB-Larson-Davis ¼ inch 2520, preamplifier 

PCB 480C02) connected to a frequency analyzer (Adobe Audition v.1.5)) indicated a 45 dB 

difference in the intensities of the main spectral peak of a 32 kHz tone burst and of its 

accompanying, low-frequency onset click (Fig. S8A). The acoustic spectra of 20 kHz tone 

bursts were similar. The difference was 45 dB regardless of the intensity of the main stimulus 

between 65 dB and 105 SPL, and this indicates that the growth of the artifact due to spectral 

splatter is linear. In masking-tuning experiments, the continuous masking tone (being 

continuous, it is not subject to spectral splatter) was sent through an independent electronic 

and acoustic channel (a second Radioshack earphone connected to the ear via a Y-shaped 

tube). Spectral analysis of the sound measured in situ indicated that there was no nonlinear 

interaction between masker and tone-burst.  

 ABR and CAP thresholds were defined as the sound level producing the smallest 

detectable wave, verified as reproducible within 2 dB. For CAP masking tuning curves (TCs), 

the probe sound was a tone-burst at a selected frequency, emitted 5 to 10 dB above the 

detection threshold, such that the waveform was easily visible. The frequency of the 

interfering continuous tone was swept over a three-octave range encompassing the probe 

frequency. The masking criterion from which the masking TC was built was a reduction of 

50 % of the probe CAP amplitude due to the presentation of the masker tone. For growth-of-
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masking studies, the probe level was increased in 5 dB steps from about 10 dB above 

detection threshold up to at least 20 dB louder. 

 

Statistical significance was tested with either Student’s t test or two-way analysis of variance 

coupled to the Bonferroni post-hoc test (2-way ANOVA). For all statistical tests, the limit of 

significance was set at p<0.05. 
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