7,799 research outputs found

    Dynamic performance of a low voltage microgrid with droop controlled distributed generation

    Get PDF
    Microgrids are small-scale highly controlled networks designed to supply electrical energy. From the operational point of view, microgrids are active distribution networks, facilitating the integration of distributed generation units. Major technical issues in this concept include system stability and protection coordination which are significantly influenced by the high penetration of inverter-interfaced distributed energy sources. These units often adopt the frequency-active power and voltage-reactive power droop control strategy to participate in the load sharing of an islanded microgrid. The scope of the paper is to investigate the dynamic performance of a low voltage laboratory-scale microgrid system, using experimental results and introduce the concept of Prony analysis for understanding the connected components. Several small disturbance test cases are conducted and the investigations focus on the influence of the droop controlled distributed generation sources

    Potential impact and controversy of stem cells in public health

    Get PDF
    Stem cells are versatile in the bodies which are able to both reproduce themselves and to produce more specialized cells. As such, they are of great potential values in repairing and regenerating damaged cells and tissues. Many different kinds of stem cells have been discovered. The most common are embryonic, foetal and adult stem cells. Stem cell research has the potential to provide an increased understanding of development and differentiation, as well as leading to treatments and cures for many diseases. They are important to the future of medicine and public health because with adequate research, stem cells have the potential to treat degenerative conditions through transplanting human stem cells into patients. With sufficient development of stem cell medicine, chronic diseases such as diabetes, heart disease, and Parkinson’s disease will be effectively managed. Embryonic stem cell (ESC) research has been a source of ethical, legal, and social controversy which has slowed the pace of stem cell science and shaped many aspects of its subsequent development

    Gamma ray flashes by plasma effects in the middle atmosphere

    Get PDF
    In this paper a novel mechanism is identified for the generation of gamma ray flashes observed on the Compton Gamma Ray Observatory satellite. During typical cloud to ground lightning flashes, the electromagnetic pulse can create a self-focused whistler wave channel or duct to guide 10-10/cm of ~1 MeV electrons (formed by static stratified electric field in clouds at 20 km), to a height of about 30 km where these electrons can create the gamma ray flash by bremsstrahlung. This scenario combines the various observational features of lightning-generated electromagnetic pulses and low altitude energetic electrons to provide a viable nonlinear transport mechanism of energetic electrons to the desired altitude of 30 km for conversion into gamma ray flashes

    Hidden geometric correlations in real multiplex networks

    Full text link
    Real networks often form interacting parts of larger and more complex systems. Examples can be found in different domains, ranging from the Internet to structural and functional brain networks. Here, we show that these multiplex systems are not random combinations of single network layers. Instead, they are organized in specific ways dictated by hidden geometric correlations between the individual layers. We find that these correlations are strong in different real multiplexes, and form a key framework for answering many important questions. Specifically, we show that these geometric correlations facilitate: (i) the definition and detection of multidimensional communities, which are sets of nodes that are simultaneously similar in multiple layers; (ii) accurate trans-layer link prediction, where connections in one layer can be predicted by observing the hidden geometric space of another layer; and (iii) efficient targeted navigation in the multilayer system using only local knowledge, which outperforms navigation in the single layers only if the geometric correlations are sufficiently strong. Our findings uncover fundamental organizing principles behind real multiplexes and can have important applications in diverse domains.Comment: Supplementary Materials available at http://www.nature.com/nphys/journal/v12/n11/extref/nphys3812-s1.pd

    Fractals at T=Tc due to instanton-like configurations

    Get PDF
    We investigate the geometry of the critical fluctuations for a general system undergoing a thermal second order phase transition. Adopting a generalized effective action for the local description of the fluctuations of the order parameter at the critical point (T=TcT=T_c) we show that instanton-like configurations, corresponding to the minima of the effective action functional, build up clusters with fractal geometry characterizing locally the critical fluctuations. The connection between the corresponding (local) fractal dimension and the critical exponents is derived. Possible extension of the local geometry of the system to a global picture is also discussed.Comment: To appear in Physical Review Letter

    On the absence of BPS preonic solutions in IIA and IIB supergravities

    Get PDF
    We consider the present absence of 31 out of 32 supersymmetric solutions in supergravity i.e., of solutions describing BPS preons. A recent result indicates that (bosonic) BPS preonic solutions do not exist in type IIB supergravity. We reconsider this analysis by using the G-frame method, extend it to the IIA supergravity case, and show that there are no (bosonic) preonic solutions for type IIA either. For the classical D=11 supergravity no conclusion can be drawn yet, although the negative IIA results permit establishing the conditions that preonic solutions would have to satisfy. For supergravities with `stringy' corrections, the existence of BPS preonic solutions remains fully open.Comment: plain latex, 12 pages Minor misprints corrected. Published in JHEP 09 (2006) 00

    Matter flows around black holes and gravitational radiation

    Full text link
    We develop and calibrate a new method for estimating the gravitational radiation emitted by complex motions of matter sources in the vicinity of black holes. We compute numerically the linearized curvature perturbations induced by matter fields evolving in fixed black hole backgrounds, whose evolution we obtain using the equations of relativistic hydrodynamics. The current implementation of the proposal concerns non-rotating holes and axisymmetric hydrodynamical motions. As first applications we study i) dust shells falling onto the black hole isotropically from finite distance, ii) initially spherical layers of material falling onto a moving black hole, and iii) anisotropic collapse of shells. We focus on the dependence of the total gravitational wave energy emission on the flow parameters, in particular shell thickness, velocity and degree of anisotropy. The gradual excitation of the black hole quasi-normal mode frequency by sufficiently compact shells is demonstrated and discussed. A new prescription for generating physically reasonable initial data is discussed, along with a range of technical issues relevant to numerical relativity.Comment: 27 pages, 12 encapsulated figures, revtex, amsfonts, submitted to Phys. Rev.

    The spinorial geometry of supersymmetric backgrounds

    Full text link
    We propose a new method to solve the Killing spinor equations of eleven-dimensional supergravity based on a description of spinors in terms of forms and on the Spin(1,10) gauge symmetry of the supercovariant derivative. We give the canonical form of Killing spinors for N=2 backgrounds provided that one of the spinors represents the orbit of Spin(1,10) with stability subgroup SU(5). We directly solve the Killing spinor equations of N=1 and some N=2, N=3 and N=4 backgrounds. In the N=2 case, we investigate backgrounds with SU(5) and SU(4) invariant Killing spinors and compute the associated spacetime forms. We find that N=2 backgrounds with SU(5) invariant Killing spinors admit a timelike Killing vector and that the space transverse to the orbits of this vector field is a Hermitian manifold with an SU(5)-structure. Furthermore, N=2 backgrounds with SU(4) invariant Killing spinors admit two Killing vectors, one timelike and one spacelike. The space transverse to the orbits of the former is an almost Hermitian manifold with an SU(4)-structure and the latter leaves the almost complex structure invariant. We explore the canonical form of Killing spinors for backgrounds with extended, N>2, supersymmetry. We investigate a class of N=3 and N=4 backgrounds with SU(4) invariant spinors. We find that in both cases the space transverse to a timelike vector field is a Hermitian manifold equipped with an SU(4)-structure and admits two holomorphic Killing vector fields. We also present an application to M-theory Calabi-Yau compactifications with fluxes to one-dimension.Comment: Latex, 54 pages, v2: clarifications made and references added. v3: minor changes. v4: minor change
    corecore