7,799 research outputs found
Dynamic performance of a low voltage microgrid with droop controlled distributed generation
Microgrids are small-scale highly controlled networks designed to supply electrical energy. From the operational point of view, microgrids are active distribution networks, facilitating the integration of distributed generation units. Major technical issues in this concept include system stability and protection coordination which are significantly influenced by the high penetration of inverter-interfaced distributed energy sources. These units often adopt the frequency-active power and voltage-reactive power droop control strategy to participate in the load sharing of an islanded microgrid. The scope of the paper is to investigate the dynamic performance of a low voltage laboratory-scale microgrid system, using experimental results and introduce the concept of Prony analysis for understanding the connected components. Several small disturbance test cases are conducted and the investigations focus on the influence of the droop controlled distributed generation sources
Potential impact and controversy of stem cells in public health
Stem cells are versatile in the bodies which are able to both reproduce themselves and to produce more specialized cells. As such, they are of great potential values in repairing and regenerating damaged cells and tissues. Many different kinds of stem cells have been discovered. The most common are embryonic, foetal and adult stem cells. Stem cell research has the potential to provide an increased understanding of development and differentiation, as well as leading to treatments and cures for many diseases. They are important to the future of medicine and public health because with adequate research, stem cells have the potential to treat degenerative conditions through transplanting human stem cells into patients. With sufficient development of stem cell medicine, chronic diseases such as diabetes, heart disease, and Parkinson’s disease will be effectively managed. Embryonic stem cell (ESC) research has been a source of ethical, legal, and social controversy which has slowed the pace of stem cell science and shaped many aspects of its subsequent development
Gamma ray flashes by plasma effects in the middle atmosphere
In this paper a novel mechanism is identified for the generation of gamma ray flashes observed on the Compton Gamma Ray Observatory satellite. During typical cloud to ground lightning flashes, the electromagnetic pulse can create a self-focused whistler wave channel or duct to guide 10-10/cm of ~1 MeV electrons (formed by static stratified electric field in clouds at 20 km), to a height of about 30 km where these electrons can create the gamma ray flash by bremsstrahlung. This scenario combines the various observational features of lightning-generated electromagnetic pulses and low altitude energetic electrons to provide a viable nonlinear transport mechanism of energetic electrons to the desired altitude of 30 km for conversion into gamma ray flashes
Hidden geometric correlations in real multiplex networks
Real networks often form interacting parts of larger and more complex
systems. Examples can be found in different domains, ranging from the Internet
to structural and functional brain networks. Here, we show that these multiplex
systems are not random combinations of single network layers. Instead, they are
organized in specific ways dictated by hidden geometric correlations between
the individual layers. We find that these correlations are strong in different
real multiplexes, and form a key framework for answering many important
questions. Specifically, we show that these geometric correlations facilitate:
(i) the definition and detection of multidimensional communities, which are
sets of nodes that are simultaneously similar in multiple layers; (ii) accurate
trans-layer link prediction, where connections in one layer can be predicted by
observing the hidden geometric space of another layer; and (iii) efficient
targeted navigation in the multilayer system using only local knowledge, which
outperforms navigation in the single layers only if the geometric correlations
are sufficiently strong. Our findings uncover fundamental organizing principles
behind real multiplexes and can have important applications in diverse domains.Comment: Supplementary Materials available at
http://www.nature.com/nphys/journal/v12/n11/extref/nphys3812-s1.pd
Fractals at T=Tc due to instanton-like configurations
We investigate the geometry of the critical fluctuations for a general system
undergoing a thermal second order phase transition. Adopting a generalized
effective action for the local description of the fluctuations of the order
parameter at the critical point () we show that instanton-like
configurations, corresponding to the minima of the effective action functional,
build up clusters with fractal geometry characterizing locally the critical
fluctuations. The connection between the corresponding (local) fractal
dimension and the critical exponents is derived. Possible extension of the
local geometry of the system to a global picture is also discussed.Comment: To appear in Physical Review Letter
On the absence of BPS preonic solutions in IIA and IIB supergravities
We consider the present absence of 31 out of 32 supersymmetric solutions in
supergravity i.e., of solutions describing BPS preons. A recent result
indicates that (bosonic) BPS preonic solutions do not exist in type IIB
supergravity. We reconsider this analysis by using the G-frame method, extend
it to the IIA supergravity case, and show that there are no (bosonic) preonic
solutions for type IIA either. For the classical D=11 supergravity no
conclusion can be drawn yet, although the negative IIA results permit
establishing the conditions that preonic solutions would have to satisfy. For
supergravities with `stringy' corrections, the existence of BPS preonic
solutions remains fully open.Comment: plain latex, 12 pages Minor misprints corrected. Published in JHEP 09
(2006) 00
Matter flows around black holes and gravitational radiation
We develop and calibrate a new method for estimating the gravitational
radiation emitted by complex motions of matter sources in the vicinity of black
holes. We compute numerically the linearized curvature perturbations induced by
matter fields evolving in fixed black hole backgrounds, whose evolution we
obtain using the equations of relativistic hydrodynamics. The current
implementation of the proposal concerns non-rotating holes and axisymmetric
hydrodynamical motions. As first applications we study i) dust shells falling
onto the black hole isotropically from finite distance, ii) initially spherical
layers of material falling onto a moving black hole, and iii) anisotropic
collapse of shells. We focus on the dependence of the total gravitational wave
energy emission on the flow parameters, in particular shell thickness, velocity
and degree of anisotropy. The gradual excitation of the black hole quasi-normal
mode frequency by sufficiently compact shells is demonstrated and discussed. A
new prescription for generating physically reasonable initial data is
discussed, along with a range of technical issues relevant to numerical
relativity.Comment: 27 pages, 12 encapsulated figures, revtex, amsfonts, submitted to
Phys. Rev.
The spinorial geometry of supersymmetric backgrounds
We propose a new method to solve the Killing spinor equations of
eleven-dimensional supergravity based on a description of spinors in terms of
forms and on the Spin(1,10) gauge symmetry of the supercovariant derivative. We
give the canonical form of Killing spinors for N=2 backgrounds provided that
one of the spinors represents the orbit of Spin(1,10) with stability subgroup
SU(5). We directly solve the Killing spinor equations of N=1 and some N=2, N=3
and N=4 backgrounds. In the N=2 case, we investigate backgrounds with SU(5) and
SU(4) invariant Killing spinors and compute the associated spacetime forms. We
find that N=2 backgrounds with SU(5) invariant Killing spinors admit a timelike
Killing vector and that the space transverse to the orbits of this vector field
is a Hermitian manifold with an SU(5)-structure. Furthermore, N=2 backgrounds
with SU(4) invariant Killing spinors admit two Killing vectors, one timelike
and one spacelike. The space transverse to the orbits of the former is an
almost Hermitian manifold with an SU(4)-structure and the latter leaves the
almost complex structure invariant. We explore the canonical form of Killing
spinors for backgrounds with extended, N>2, supersymmetry. We investigate a
class of N=3 and N=4 backgrounds with SU(4) invariant spinors. We find that in
both cases the space transverse to a timelike vector field is a Hermitian
manifold equipped with an SU(4)-structure and admits two holomorphic Killing
vector fields. We also present an application to M-theory Calabi-Yau
compactifications with fluxes to one-dimension.Comment: Latex, 54 pages, v2: clarifications made and references added. v3:
minor changes. v4: minor change
- …