306 research outputs found

    Object-oriented modelling of a flexible beam including geometric nonlinearities

    Get PDF
    In this paper, an efficient approach for the modelling and simulation of slender beams subject to heavy inertial loads is presented. The limitations imposed by a linear formulation of elasticity are overcome by a second order expansion of the displacement field, based on a geometrical exact beam model. In light of this, the nonlinearities of the elastic terms are shifted as inertial contributions, which yields an expression of the equations of motion in closed form. Thanks to the formulation in closed form, the proposed model is implemented in Modelica, with particular care to the suitability of the model with respect to the Modelica Multibody library. After describing the model formulation and implementation, the paper presents some simulation results, in order to validate the model with respect to benchmarks, widely adopted in literature

    Design of a modular exhibition structure with additive manufacturing of eco-sustainable materials

    Get PDF
    In this paper the mechanical characteristics of an innovative bioplastic material, the HBP - HempBioPlastic filament, is investigated. HBP was recently patented by an Italian company Kanésis that focused its activity on nature-derived materials. The filaments are the upshot of an original process allowing to reuse the surplus of the agricultural supply chains and transform it into new sustainable materials. At first, the 3D printed HBP samples were tested in tensile tests according to the ASTM- D638 standard and monitored in term of deformations by the Digital Image Correlation techniques (DIC) in order to evaluate the stress-strain behavior of different HBP textures under loading. In addition, using the HBP and the results coming from the experimental campaign, the design of an exhibition pavilion was proposed. The pavilion was modelled starting from the geometric construction of the fullerene. The supporting modular structure is combined by HBP modular elements, that can be produced by 3D printing or moulding. Finally, in order to demonstrate the feasibility of the proposed pavilion, a linear finite element analysis is presented on the base of the experimentally determined mechanical properties of HBP elements, under the effects of wind and seismic environmental actions

    Cap rock efficiency of geothermal systems in fold-and-thrust belts: Evidence from paleo-thermal and structural analyses in Rosario de La Frontera geothermal area (NW Argentina)

    Get PDF
    Cap rock characterization of geothermal systems is often neglected despite fracturing may reduce its efficiency and favours fluid migration. We investigated the siliciclastic cap rock of Rosario de La Frontera geothermal system (NW Argentina) in order to assess its quality as a function of fracture patterns and related thermal alteration. Paleothermal investigations (XRD on fine-grained fraction of sediments, organic matter optical analysis and fluid inclusions on veins) and 1D thermal modelling allowed us to distinguish the thermal fingerprint associated to sedimentary burial from that related to fluid migration. The geothermal system is hosted in a Neogene N-S anticline dissected by high angle NNW- and ENE-striking faults. Its cap rock can be grouped into two quality categories: • rocks acting as good insulators, deformed by NNW–SSE and E–W shear fractures, NNE-SSW gypsum- and N-S-striking calcite-filled veins that developed during the initial stage of anticline growth. Maximum paleo-temperatures (< 60 °C) were experienced during deposition to folding phases.• rocks acting as bad insulators, deformed by NNW-SSE fault planes and NNW- and WNW-striking sets of fractures associated to late transpressive kinematics. Maximum paleo-temperatures higher than about 115 °C are linked to fluid migration from the reservoir to surface (with a reservoir top at maximum depths of 2.5 km) along fault damage zones.This multi-method approach turned out to be particularly useful to trace the main pathways of hot fluids and can be applied in blind geothermal systems where either subsurface data are scarce or surface thermal anomalies are lacking.Fil: Maffucci, R.. Universita Degli Studi Della Tuscia; Italia. Universita Degli Studi Roma Tre; ItaliaFil: Corrado, Sveva. Universita Degli Studi Roma Tre; ItaliaFil: Aldega, L.. Instituto de Investigaciones Universitarias Roma la Sapienza; ItaliaFil: Bigi, S.. Instituto de Investigaciones Universitarias Roma la Sapienza; ItaliaFil: Chiodi, Agostina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Di Paolo, L.. Eni E&P Division; ItaliaFil: Giordano, G.. Universita Degli Studi Roma Tre; ItaliaFil: Invernizzi, C.. Universita Degli Di Camerino; Itali

    Innovative technique for the base isolation of existing buildings

    Get PDF
    An innovative base isolation system has been recently proposed for the retrofitting of existing buildings, in which the isolation layer is inserted under the building foundations so that the building, along with its foundations, is isolated from the surrounding soil. The isolation layer resides in closely-spaced micro-tunnels, constructed under the entire width of the building. These micro-tunnels, along with the trenches around the building, isolate the structure from the surrounding soil. The execution of these micro-tunnels is the most critical construction stage, because it may result in settlements which can damage the structure. In this paper, the behaviour of an existing structure, consisting of a masonry wall subjected to tunnelling-induced ground subsidence, is analysed. A parametric study is conducted using 2-D nonlinear finite element analyses to understand the role of key factors such as strength and stiffness of soil and masonry, roughness of soil-structure interface, excavation sequence of tunnels, wall dimensions and openings configuration. The study identifies the design variables which influence the most the risk of structural damage and suggests the most effective damage symptoms to be monitored during constructio

    Visual Monitoring of Complex Algorithms

    Get PDF
    Purchases, conversations, access to information, music and movies: more and more of our online life is mediated by complex algorithms that are designed to make the experience of the Web customized and more “personal”. These algorithms can process an amount of heterogeneous data that would take enormous resources for the human mind to cope with, and find valuable patterns in it. Their use is not limited to our online experience as similar algorithms have been also implemented, for example, to inform policymakers: suggesting where to deploy police forces around the urban context, assessing criminality risk scores of offenders, or allocating high school students to the most suited school. While the consequences of the decisions made by algorithms have a great impact on people’s lives, the way they are built and designed makes them de facto “black boxes”: a series of legal and technical barriers prevents from accessing and understanding how a certain input influences a given output. Overseeing their decision processes becomes then of the utmost importance. This paper argues that visualizations can become a powerful tool to monitor algorithms and make their complexity accessible and usable by visually showing the relation between the inputs and the outputs in a manner that mimics an observational study approach. The paper analyzes a case study developed as an experiment to test opportunities and criticalities in using visualization to represent the presence and the activity of algorithms. This represents a shift from the main purpose of visualizations and Data Visualization in general: since its strong suit is to support human decision- making processes by transforming data into knowledge, the substitution of people by machines in this activity seems to make visualizations obsolete. A computer doesn’t need to “see” the data to make a decision – or at least not in the same way as people do – no matter how multidimensional and hetero- geneous the data is. With the diffusion of algorithms, the need to inspect their accountability and performance will simply move visualizations at a later stage. From a decision-making tool visualization becomes a monitoring and awareness tool

    Thermodynamic assessment of liquid metal–steam USC binary plants to break 50% efficiency in pulverized coal plants

    Get PDF
    Nowadays the state-of-the-art technology to convert coal energy of combustion into electricity is to adopt a pulverized coal boiler coupled with an Ultra Super Critical (USC) steam cycle. The total installed capacity of this well-proven configuration is of hundreds of GW worldwide with an increasing share respect to both supercritical and subcritical cycles. Typical coal USC cycles have maximum pressures of around 270 bar and maximum temperatures of 600-620°C for the high pressure and the mid pressure steam respectively. Maximum attainable efficiency is close to 45% in favorable locations and is mainly penalized by two irreversible processes: coal combustion (about 30%) and heat introduction (about 10%) that is characterized by large temperature differences between the hot flue gases and the steam. The main strategy to reduce the second loss is focused on the development of new super alloys able to withstand higher temperatures, higher pressures and water corrosion and so bring efficiencies close to 49% in the so called Advanced USC plants (AUSC). However, the increasing of maximum cycle pressure and temperature results in a relatively small increase of cycle efficiency due to the large increase of specific heat around the critical point but, on the other hand, it involves a considerably increase of equipment’s cost. Another option to increase cycle efficiency is represented by the introduction of a high temperature and low pressure power cycle between the flue gases and the steam cycle. In this case, the topping power cycle could be (i) an external combustion gas cycle, (ii) an open gas cycle fueled by syngas produced by coal gasification or (iii) a Rankine cycle that uses a proper working fluid with a very high critical temperature. This study aims to define a number of optimized binary plant configurations with saturated Rankine potassium cycle as top cycle and a conventional USC plant as bottom cycle. Top cycle receives heat from the flue gases within the coal-fired boiler while bottom cycle recovers heat from the top cycle fluid condensation and the flue gases cooling before the Ljunström air preheater. Potassium thermodynamic properties are computed with a proper equation of state calibrated on experimental data from reference [2] and able to predict accurately both the volumetric and the thermodynamic behavior of potassium in liquid, vapor and two-phase conditions. Different liquid metal cycles have been designed and the trends of the main quantities (heat of condensation, turbine isentropic enthalpy drop and plant efficiency) have been correlated to both evaporation and condensation temperatures. This information is implemented in the USC scheme, calculated with an in-house process simulation code GS developed at the Department of Energy at Politecnico di Milano [3], which has been validated and used on hundreds of publications and projects. Analysis is completed by the evaluation of the potassium turbine design in terms of number of stages, need of cross-over and optimal rotational speed. A double condensation level configuration is also considered for the top cycle in order to further reduce the temperature difference between the top cycle condensation and evaporation process in the bottom cycle, which further increases the efficiency. The thermal input of coal to the burner is fixed for all the simulations to 1.66 GW, five plant configurations have been selected as the most promising ones and fairly compared with a conventional USC coal-fired power plant having a calculated efficiency equal to 44.72%. Limiting the maximum potassium temperature at 800°C, which corresponds to an evaporation pressure of 1.5 bar, it is possible to reach electric efficiencies close to 51% with a single condensation level top cycle and value close to 52% with a double condensation level top cycle. Power produced by the metal cycle ranges between 25 and 30% of the net system power output. As general conclusion the adoption of binary cycles with a top Rankine liquid metal cycle is demonstrated to be an attractive option from a thermodynamic point of view leading to an electric efficiency larger than in AUSC plants. However, these binary metal-steam cycles still need to face a number of technical and safety issues mainly related to the use of liquid metals. Technical issues are related to the high temperature of heat exchange surface of the boiler, to the very high vacuum at condenser, the need of limiting air leakages and the design of a turbine expanding a fluid with an increasing liquid fraction. Safety issues are due to working fluid reactivity with water that requires the need of expensive solution to limit fire hazard. [1] World Energy Council, 2016. World Energy Resources: Coal. [2] Reynolds, W.C. Thermodynamic properties in SI - graphs, tables and computational equations for 40 substances. Department of Mechanical Engineering, Stanford Univ., 1979 [3] GECOS, GS software. www.gecos.polimi.it/software/gs.ph

    Innovative technique for the base isolation of existing buildings

    Get PDF
    An innovative base isolation system has been recently proposed for the retrofitting of existing buildings, in which the isolation layer is inserted under the building foundations so that the building, along with its foundations, is isolated from the surrounding soil. The isolation layer resides in closely-spaced micro-tunnels, constructed under the entire width of the building. These micro-tunnels, along with the trenches around the building, isolate the structure from the surrounding soil. The execution of these micro-tunnels is the most critical construction stage, because it may result in settlements which can damage the structure. In this paper, the behaviour of an existing structure, consisting of a masonry wall subjected to tunnelling-induced ground subsidence, is analysed. A parametric study is conducted using 2-D nonlinear finite element analyses to understand the role of key factors such as strength and stiffness of soil and masonry, roughness of soil-structure interface, excavation sequence of tunnels, wall dimensions and openings configuration. The study identifies the design variables which influence the most the risk of structural damage and suggests the most effective damage symptoms to be monitored during constructio
    • …
    corecore