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Abstract

In this paper, an efficient approach for the modelling and
simulation of slender beams subject to heavy inertial loads
is presented. The limitations imposed by a linear formu-
lation of elasticity are overcome by a second order expan-
sion of the displacement field, based on a geometrical ex-
act beam model. In light of this, the nonlinearities of the
elastic terms are shifted as inertial contributions, which
yields an expression of the equations of motion in closed
form. Thanks to the formulation in closed form, the pro-
posed model is implemented in Modelica, with particu-
lar care to the suitability of the model with respect to the
Modelica Multibody library. After describing the model
formulation and implementation, the paper presents some
simulation results, in order to validate the model with re-
spect to benchmarks, widely adopted in literature. In
the context of modern multi-domain modelling, the mod-
ular and object oriented approaches are the state-of-the-art
paradigms upon which complex models are built. In this
respect, multibody dynamics is frequently only one of the
domains involved, nevertheless several real-world appli-
cations can be found where multibody modelling plays a
crucial role in the design of systems, analysis and model-
based control architectures. In this framework, modelling
techniques and tools have evolved towards the insertion
of flexible bodies into the models (MSC Software Cor-
poration, 2017; Claytex Services Ltd; Dymore Solutions,
2016; Spacar, 2016; Heckmann et al., 2006; Ferretti et al.,
2014).

Flexible multibody systems can be divided in two main
branches according to the linear or nonlinear constitu-
tive laws employed to model flexible elements. In the
first case, the strain-displacement relationships are as-
sumed to be linear and strain components to remain
small. Nevertheless, several occurrences can be found
where elastic bodies may undergo large overall motion
while strains are kept small. Traditionally, linear elas-
ticity has been accounted for using the so called floating
frame of reference approach (short, FFR), which is natu-
ral way to include flexibility in the rigid multibody frame-
work(Shabana, 1998). Indeed, the displacement field is

decomposed as the sum of an arbitrary large motion of
a suitably selected frame, superposed to an elastic dis-
placement field which is assumed to be small with re-
spect to the overall motion. Thus the elastic displacement
field may be computed accurately through a modal expan-
sion, which is extremely efficient from a computational
point of view. Furthermore, component mode synthesis
techniques, like the well-known Craig-Bampton method
(Craig and Bampton, 1968), has been widely adopted in
multibody simulation tools and specifically in the context
of Modelica, both in commercial (Claytex Services Ltd;
Heckmann et al., 2006) and open-source (Ferretti et al.,
2014; Bascetta et al., 2015) libraries. By means of this
technique, complex geometry can be included in the anal-
ysis even tough an external finite element modeling tool
is required. Although the concept of floating frame is
simple, in practice there are several issues to be handled.
The selection of the floating frame is not unique and ac-
curacy of the results is strongly affected by the choice of
the modal basis (Schwertassek et al., 1999a), (Heckmann,
2010). Furthermore, the use of linear elasticity may lead
to erroneous results when the inertial contribution of the
floating frame motion is large enough to produce high
loads in bodies with high stiffness. A well-known ex-
ample is the rotating beam around a fixed axis: the cou-
pling among the axial, flexural and torsional motion, ne-
glected by the linearized theory, is crucial in order to cor-
rectly predict the behavior of the structure (Berzeri and
Shabana, 2002; Sharf, 1995; Lugrís et al., 2008; Absy and
Shabana, 1997). On the other hand, the flaws of this the-
ory pushed the multibody community toward the develop-
ment of new approaches, closely related to the nonlinear
finite element method (Géradin and Cardona, 2001). In
this case the domain is divided in sub-domains or finite el-
ements which are connected at nodes to ensure elements
compatibility, the nodal displacements and rotations are
referred to a common frame, which is selected as the iner-
tial frame. From a theoretical point of view this approach
is challenging when considering structural elements such
as beams, shells, plates and in particular when large dis-
placements and rotations are considered. Geometrically
exact models for these elements have been developed in
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the last decades (Pai, 2007) and are the state-of-the-art
to deal with large displacements small strains problems.
Nonetheless special care is required for the computation
of elastic terms and for the interpolation scheme of spa-
tial rotations in a finite elements framework (Jelenić and
Crisfield, 1998). Moreover, a large number of degrees of
freedom is required to obtain accurate solutions and the
expression of the elastic contribution is highly nonlinear
even in the case of small strains. The use of such approach
within the Modelica multibody library is difficult because
the closed form expression of the discretized equations of
motion is not manageable even for simple elements like
beams.

Within the FFR method, several approaches have been
proposed in the reference literature that overcome the
shortcomings of the standard linear approach by account-
ing for geometrically nonlinear effects (Wallrapp and
Wiedemann, 2003; Bremer, 2008; Banerjee, 2016). As
already mentioned, the classic linear approach may pro-
vide erroneous results due to a-priori linearization of the
kinematics and of the elastic energy, even if the strains are
small. This problem has been deeply studied (Absy and
Shabana, 1997) and different techniques have been devel-
oped to consistently linearize the equations of motion, so
that all the relevant terms are retained while keeping the
standard linear elastic terms.

In this work, a general framework to include geomet-
rically nonlinear effects within the FFR approach is pre-
sented. The approach is based on a second order expan-
sion of the displacement field, which can be derived from
geometrically exact models of simple structural elements.
Then, the displacement field is written in terms of a set
of generalized deformation variables for which the elas-
tic terms are linear. Thanks to this substitution, the stan-
dard linear elastic theory can be exploited and the non-
linearities are expressed as inertial contribution, which can
be computed in closed form. Hence, the existing FFR for-
mulation can be employed with minor changes, which is
particularly efficient when small elastic deformations are
expected: few degrees of freedom are usually required.

The proposed formulation has been applied to slender
structural elements which are usually modeled as beams.
In the standard approach, a linearized model is adopted to
describe the deformation field in the floating frame, such
as the Euler-Bernoulli or the Timoshenko beam model.
This approach greatly simplifies the computation of the
elastic terms but limits the correctness of the results by
neglecting nonlinear effects, e.g. the geometric stiffen-
ing induced by the centrifugal acceleration for fast rotat-
ing beams. Within the Modelica framework, the standard
linear approach has been implemented in (Schiavo et al.,
2006), while in (Heckmann et al., 2006) a second order ap-
porximation of the deformation field is presented together
with a Ritz-Galerkin discretization (Ritz, 1909). With re-
spect to (Heckmann et al., 2006), in this work the defor-
mation field is expanded starting from a geometrically ex-
act description of the beam kinematics ((Schwertassek and

Wallrapp, 1999)) and the model is discretized according
to a finite element approach. Finally, the Craig-Bampton
reduction is applied to obtain a computationally efficient
set of equations. The model is implemented in Model-
ica following an approach similar to (Ferretti et al., 2014)
and two validation benchmarks taken from literature are
reproduced, showing trustworthy agreement between sim-
ulation results and literature data.

The paper is organized as follows: In section 1 the mod-
elling framework is described for the generic flexible body
and the equations of motion are formulated. Section 2
goes into details of the beams by describing the mathe-
matical formulation pointed out in the previous section. In
section 3 the implementation and the simulation results are
described. In particular, the results are compared with two
well known literature benchmarks. Section 4 concludes
the paper.

1 Equations of motion of a flexible
boby

Within the FFR approach, the absolute position p of a
generic point of the flexible body is composed by the sum
of three contributions

p = r+u0 +u f , (1)

where r is the vector describing the position of the refer-
ence frame {Oi,xi,yi,zi} with respect to the inertial frame
{Ow,xw,yw,zw}, u0 is the undeformed position of the
point with respect to the local reference frame and u f is
the deformation field, as shown by Figure 1. The compo-
nents of u0 resolved in {Oi,xi,yi,zi} are named material
coordinates.

In order to obtain the equations of motion, the principle
of virtual work is exploited, i.e.:

δWe = δWi (2)

where δWe and δWi are the external and internal virtual
works. According to the FFR approach, the virtual dis-
placement related to (1) can be computed as follows:

δp = δr+δφ × (u0 +u f
)
+δu f (3)

where δφ is the virtual rotations vector of {Oi,xi,yi,zi}
while δu f is the virtual variation of the deformation field
with respect to the local reference frame of the body.

Figure 1. Flexible body reference frames



The external and internal virtual works for a generic
flexible body can be defined as:

δWe =
∫
V

δp · (−ρa+ f) dV +
∫
AN

δp · tdA (4)

δWi =
∫
V

δB : JdV (5)

where ρ is the density of the body, B ∈ R
3x3 and J ∈ R

3x3

are the Jaumann strain and stress tensor respectively (see
(Pai, 2007) for more details). By using the indicial nota-
tion, the double inner tensor product ":" is defined by:

∫
V

δB : JdV =
∫
V

3

∑
i=1

3

∑
j=1

δBi jJi j dV. (6)

Moreover, f is the body force per unit volume and t the
surface traction per unit area, V is the volume of the body
and A is the unconstrained portion of the body surface.

It must be pointed out that the Jaumann strain tensor
is related to the deformation gradient F ∈ R

3x3 as follows
(see (Hodges, 2006)):

B = U− I U2 = FT ·F (7)

where I is the identity tensor and U is the right stretch
tensor.

It must be pointed out that the Jaumann strains are an
objective strain measure suitable for large displacements-
small strains analysis since they are co-rotated engineer-
ing strains. As a consequence, in a linear elastic frame-
work the reduced material stiffness matrix can be derived
from standard experiments (Pai, 2007). The term of δWe
relative to inertial virtual work can be expanded by substi-
tuting (3) in (4), thus obtaining:

−
∫
V

δ p ·ρ (v̇+ω×v+ ω̇× (u0 +u f
)
+ (8)

+ω× (ω× (u0 +u f
)
)+ ü f +2ω× u̇ f

)
dV

where v and ω are the body translational and angular ve-
locities of the FFR.

In the classic linear approach, the deformation field
measured in the FFR is assumed to be infinitesimal such
that the computation of the internal virtual work can be
approximated with the standard linear theory:

∫
V

δB : JdV ≈
∫
V

3

∑
i=1

3

∑
j=1

δεi jσi j dV (9)

where εi j = 1
2 (Fi j+Fji)− δi j is the infinitesimal defor-

mation tensor, and σi j the conjugated stress tensor, both
resolved in the undeformed basis {Oi,xi,yi,zi}. The cor-
responding components of the deformation gradient are:

Fi j = δi j+
∂u f i
∂u0 j

(10)

where δi j are the components of the identity tensor:

δi j =
{

1 i= j
0 i �= j . (11)

As already mentioned in the introduction, the classic
linear approach may lead to erroneous results since sev-
eral terms are a-priori neglected. Instead, a consistent ap-
proximation of (5) is based on the decomposition of the
deformation gradient such that

Bi j ≈ 1

2
(Fi j+Fji)−δi j (12)

where Fi j = ∑3
k=1RikFk j and Rik is the rotation matrix de-

scribing the orientation of a suitable frame with respect to
the local reference frame. Under the small strains assump-
tion, the aforementioned frame can be selected such that
F̂i j ≈ δi j, even if displacements are large (see (Bauchau
et al., 2016) for more details).

Within this framework, a second order approximation
of the deformation field is considered in this paper. In
particular, it is possible to operate a change of variables
such that elastic forces can be derived from standard lin-
ear theory whereas geometrical effects are computed as an
inertial contribution. In order to perform such change, the
following assumptions are introduced:

• the deformation field u f depends on a finite set of
physical deformation functions dp = dp(u0), i.e.,
u f = u f (dp,u0). Physical deformations depend only
on a reduced set of material coordinates u0, e.g., in
beam models, the reference axis displacements and
the cross-section rotation angles are functions of the
reference axis coordinate alone;

• the physical deformations dp can be expressed in
terms of generalized deformation functions dg, i.e.,
dp=dp(dg,u0), such that the deformation gradient F
(and thus elastic forces) are linear in dg when strains
(but not displacements) are small;

• the nonlinear relation u f = u f (dp(dg),u0) is ex-
panded up to the second order in terms of the gen-
eralized deformations.

It is worth remarking that these assumptions are not re-
strictive as they hold true for geometrically nonlinear
models of beams, plates and shells. On the other hand,
it is not trivial to obtain the relationship among physi-
cal and generalized deformation variables (Schwertassek
et al., 1999b).
Assuming that the generalized deformations are expanded
by means of a Ritz-Galerking approach (Ritz, 1909), i.e.,

dg = Φ(u0)q(t), (13)

the displacement field, up to the second order, reads:

u f = Sq+G(q)q, (14)



where Φ(u0) are spatial mode functions, q is a vector of
generalized coordinates and S(u0) is the standard matrix
of shape functions obtained with linear models. The ma-
trix G(q) linearly depends on q and allows to account for
geometrically nonlinear terms:

G(q) =

⎡⎣ qTG1

qTG2

qTG3

⎤⎦ (15)

where Gi = Gi(u0) is a symmetric matrix depending
only on the material coordinates. Adopting the ap-
proximation (14) in the definition of the internal and
external virtual works (4,5) leads to the derivation
of the equations of motion in the following form:

m(v̇−g)+md̃T
Cω̇ +CT

t q̈+ ω̃md̃T
Cω +2ω̃CT

t q̇+ ω̃mv1 = hr
e (16)

md̃C (v̇−g)+Jω̇ +CT
r q̈+ ω̃Jω +md̃Cω̃v+2ω̃CT

r q̇ = hθ
e (17)

Cg
t (v̇−g)+Cg

r ω̇ +Meq̈+Ctω̃v+(De +Dcr) q̇+Kq = h f
e −hct

e (18)

where the terms of the inertia and stiffness matrices in-
clude additional terms with respect to the classical linear
Newton-Euler approach(Shabana, 1998). In particular, the
generalized stiffness matrix is expressed as follows:

K = Ke +Kct +K1
g +K2

g +Kr
g (19)

and contains additional contributions relative the motion
induced stiffness (K1

g,K2
g) and the external action which

account for geometrically nonlinear effects. The motion
induced stiffness (Kr

g) contribution depends on the refer-
ence frame motion and accounts for the loss of stiffness
induced by the centrifugal acceleration (Kct). The afore-
mentioned terms appear in the equations of motion as a
consequence of the presence of the first order term in the
virtual variation of the generalized coordinates formula-
tion:

δu f = Sδq+G(q)δq (20)

which yields a contribution in the external virtual work
formulation

δWe = δWc
e +δWg (21)

where the standard terms of the external virtual work are
contained in δWc

e and the geometric contribution is de-
scribed by δWg. The complete derivation of the terms
is not reported here for the sake of brevity, it must be
however pointed out that all the terms of the geomet-
ric contribution can be computed as function of invari-
ants. The formulation described above enhances the clas-
sic linear FFR approach through the addition of further
terms, providing a simple solution for including geomet-
ric nonlinearities in the equations of motion. This can be
considered as a relevant advantage of the proposed for-
mulation. The nonlinearities are isolated in the inertial
terms, hence, a closed form expression for the geomet-
rical stiffening effects is derived, which is essential for
the application of the proposed approach in the context

of the Modelica framework. The definition of the stan-
dard terms

(
m, dC, Ct, J,Cr, De, Ke, Me, hr

e, hθ
e , hf

e

)
and

the computation of the corresponding invariants can be
found in (Bascetta et al., 2015).

2 Geometrically exact modeling of
slender beams

The method developed in Section 1 is applied to derive the
equations of motion of slender beams, for which the cross-
section plane is assumed to remain normal to the reference
axis during the deformation. The motion of the flexible
beam can be described in terms of three reference frames
as shown in Figure 2, frame {Ow,xw,yw,zw} is the world
reference frame, while the undeformed beam geometry is
represented by frame {Or,xr,yr,zr} where b1 is the di-
rection of the undeformed beam axis, b2 and b3 define the
cross section principal axis. Finally, frame {Od ,xd ,yd ,zd}
describes the motion of the beam cross-section. The out-
of-plane displacement are assumed to be negligible.

Figure 2. Beam reference frames

According to the reference frames described above, the
position of a generic point on the deformed beam, with
respect to the inertial frame, (see eq.1) is given by:

p = r+ xb1 +u+R ·ξ (22)

where u = u(x)b1 + v(x)b2 +w(x)b3 represents the vec-
tor of the cross-section translation dofs, ξ = yb2 + zb3



and R(x) is the rigid rotation tensor of the cross-section
which can be parametrized by means of Euler angles
(θ(x), φ(x), ψ(x)). The deformation field, defined as u f =
u+R · ξ , is a nonlinear function of a set of physical dis-
placements dp = (u, v, w, θ , φ , ψ), as required by the first
assumption in Section 1.
As already mentioned, the Jaumann strain tensor B is cho-
sen as the strain measure. According to the small defor-
mations assumption, B can be consistently approximated
as:

B11 = e+ zk2− yk3

2B12 = 2B21 =−zk1

2B13 = 2B31 = yk1

B22, B33, B23, B32 = 0

(23)

where e represents the axial stretch, k1 the twisting cur-
vature and k2,k3 the bending curvatures. These quanti-
ties are called generalized strains and are nonlinear func-
tions of the physical displacements and their derivatives,
see (Hodges, 2006) for further details. The internal virtual
work is expressed in terms of the Jaumann strains Bi j in
(23) and their work-conjugate stresses Ji j as follows:

δWi =
∫
V
(δB11J11 +2δB12J12 +2δB13J13)dV. (24)

After substituting (23), the internal virtual work can be
compactly written by introducing the generalized axial
force F1 and moments M1,M2,M3 as follows

δWi =
∫ �

0
(δeF1 +δk1M1 +δk2M2 +δk3M3)dx. (25)

Assuming a linear elastic constitutive law for an isotropic
material, the generalized force and moment are related to
the corresponding strains as:⎧⎪⎪⎨⎪⎪⎩

F1

M1

M2

M3

⎫⎪⎪⎬⎪⎪⎭=

⎡⎢⎢⎣
EA 0 0 0
0 GJ 0 0
0 0 EJyy 0
0 0 0 EJzz

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩

e
k1

k2

k3

⎫⎪⎪⎬⎪⎪⎭

where EA, GJ, EJyy, EJzz are the axial, torsional, and
bending stiffness, respectively.

Thus, by substituting the constitutive law in the internal
virtual work expression:

∫ �

0
(δeEAe+δk1GJk1 +δk1GJk1 +δk2EJyyk2

+δk3EJzzk3) dx. (26)

It is clear that the above expression is linear in generalized
strains and has the same mathematical form of the clas-
sic linear approach. Nonetheless, it is valid also in the the
case of large displacements and small strains. In order to
adopt the described approach, a suitable change of vari-
ables is introduced, such that the elastic forces are linear
in these new variables, according to the second assump-
tion in Section 1.
The generalized strain components are written in terms
of a set of generalized deformation functions dg =(
ū(x), v̄(x), w̄(x), φ̄(x)

)
by defining:

e=
∂ ū
∂x

, k1 =
∂ φ̄
∂x

,

k2 =−∂ 2w̄
∂x2

, k3 =
∂ 2v̄
∂x2

. (27)

As shown in (Schwertassek and Wallrapp, 1999), by
describing the physical variables in terms of gener-
alized strains (27) and expanding up to the second
order the corresponding relation, one can compute
the components of the deformation field u f as:

u f1 = ū− y
∂ v̄
∂x
− z

∂ w̄
∂x
− 1

2

∫ x

0

[(
∂ v̄
∂x

)2

+

(
∂ w̄
∂x

)2
]
dx+

−y
[∫ x

0

(
φ̄

∂ 2w̄
∂x2

− ∂ ū
∂x

∂ 2v̄
∂x2

)
dx+ φ̄

∂ w̄
∂x

]
− z
[∫ x

0

(
∂ ū
∂x

∂ 2w̄
∂x2

+ φ̄
∂ 2v̄
∂x2

)
dx− φ̄

∂ v̄
∂x

]
(28)

u f2 = v̄− zφ̄ +
∫ x

0

[
∂ ū
∂x

∂ v̄
∂x

+
∫ x

0

(
∂ ū
∂x

∂ 2v̄
∂x2

− φ̄
∂ 2w̄
∂x2

)
dx
]
dx− 1

2
y

[(
∂ v̄
∂x

)2

+ φ̄ 2

]
+

−z
[

∂ v̄
∂x

∂ w̄
∂x

+
∫ x

0

(
∂ ū
∂x

∂ φ̄
∂x
− ∂ w̄

∂x
∂ 2v̄
∂x2

)
dx
]

(29)

u f3 = w̄+ yφ̄ +
∫ x

0

[
∂ ū
∂x

∂ w̄
∂x

dx+
∫ x

0

(
∂ ū
∂x

∂ 2w̄
∂x2

+ φ̄
∂ 2v̄
∂x2

)
dx
]
dx− 1

2
z

[(
∂ w̄
∂x

)2

+ φ̄ 2

]
+

+y
[∫ x

0

(
∂ ū
∂x

∂ φ̄
∂x
− ∂ w̄

∂x
∂ 2v̄
∂x2

)
dx
]
. (30)



The direction cosine matrix of the cross-section, ex-
panded up to the second order, can be defined accord-
ingly. A full treatise can be found in (Schwertassek et al.,
1999b).
Finally, the generalized deformations, namely: ū(x), v̄(x),
w̄(x) and φ̄(x) can be approximated as a linear combina-
tion of shape functions in terms of the generalized coor-
dinates q by means of the classical Ritz-Galerkin method
(Ritz, 1909), in particular:

ū= Φ1q v̄= Φ2q (31)

w̄= Φ3q φ̄ = Φ4q (32)

where Φ are rows of admissible shape functions. It is
worth to remark that the boundary conditions of the gen-
eralized displacements are the same of physical displace-
ments. In this work, a finite element approach is used to
discretize the beam domain. After the assembly proce-
dure, the Craig-Bampton (Craig and Bampton, 1968) re-
duction procedure is applied by projecting the equations

on the corresponding modal basis, which include con-
straint as well as normal modes. This is particularly ef-
ficient from a computational point of view since the final
model includes only a few degrees of freedom while pro-
viding satisfactory results. The deformation field (14) can
be written as:⎧⎨⎩ u f1

u f2
u f3

⎫⎬⎭=

⎡⎣ S1

S2

S3

⎤⎦q+

⎡⎣ qTG1

qTG2

qTG3

⎤⎦q

where

S1 = Φ1− y
∂Φ2

∂x
− z

∂Φ3

∂x
S2 = Φ2− zΦ4

S3 = Φ3 + yΦ4

G1 = −1

2

x∫
0

(
∂Φ2

∂x

T ∂Φ2

∂x
+

∂Φ3

∂x

T ∂Φ3

∂x

)
dx− y

⎡⎣ x∫
0

(
ΦT

4

∂ 2Φ3

∂x2
− ∂Φ1

∂x

T ∂ 2Φ2

∂x2

)
dx+ΦT

4

∂Φ3

∂x

⎤⎦+
−z
⎡⎣ x∫

0

(
ΦT

4

∂ 2Φ2

∂x2
+

∂Φ1

∂x

T ∂ 2Φ3

∂x2

)
dx−ΦT

4

∂Φ2

∂x

⎤⎦ (33)

G2 =

x∫
0

⎡⎣∂Φ1

∂x

T ∂Φ2

∂x
+

x∫
0

(
∂Φ1

∂x

T ∂ 2Φ2

∂x2
−ΦT

4

∂ 2Φ3

∂x2

)
dx

⎤⎦dx− 1

2
y

(
∂Φ2

∂x

T ∂Φ2

∂x
+ΦT

4 Φ4

)
+

−z
⎡⎣∂Φ2

∂x

T ∂Φ3

∂x
+

x∫
0

(
∂Φ1

∂x

T ∂Φ4

∂x
− ∂Φ3

∂x

T ∂ 2Φ2

∂x2

)
dx

⎤⎦ (34)

G3 =

x∫
0

⎡⎣∂Φ1

∂x

T ∂Φ3

∂x
+

x∫
0

(
∂Φ1

∂x

T ∂ 2Φ3

∂x2
+ΦT

4

∂ 2Φ2

∂x2

)
dx

⎤⎦dx+
+y

x∫
0

(
∂Φ1

∂x

T ∂Φ4

∂x
− ∂Φ3

∂x

T ∂ 2Φ2

∂x2

)
dx− 1

2
z

(
∂Φ3

∂x

T ∂Φ3

∂x
+ΦT

4 Φ4

)
. (35)

The terms of the direction cosines matrix are not reported
here for brevity, the procedure for the computation is sim-
ilar.

3 Model implementation and valida-
tion

3.1 Model implementation

The implementation of the model is similar to (Ferretti
et al., 2014), a component fully compatible with the stan-

dard Modelica multibody library has been developed. The
shape functions and the invariants which assemble the
terms of eq.(18) are collected in a Modelica record de-
fined as replaceable, in order to exploit the object-
oriented approach of the language and possibly instantiate
multiple flexible beams in the same model. The afore-
mentioned record has been calculated offline by means
of an external script written in Matlab (Mathworks, 2014)
starting from the geometric and material parameters of the
beam. The symbolic computation toolbox has been used
to solve eqs.(28,29,30).



Figure 3. Diagram level scheme of the beam in a simple model

Figure 4. User interface of the beam model

The connectors are placed at the ends of the beam and
the number is limited to two. As an example of model
usage, fig. 3 shows a simple implementation containing
the beam, while fig. 4 shows the GUI of the beam model,
where the replaceable data record can be modified.

In the rigid body components of the multibody library,
the body coordinates are used as state variables when the
component is floating, this is carried out by selecting the
component as root of one connection tree (see (The Mod-
elica Association, 2009; Otter et al., 2003) for details).
Conversely, if the body is connected to a root, a branch
statement is declared and the kinematic is computed from
the states of the joints connecting the component to the
root tree. This mechanism is reproduced in the imple-
mentation described here, the FFR (placed in the FrameA
connector) is assigned as root of the connection tree if the
body is floating, if the body is part of a kinematic chain a
branch is declared between FrameA and FrameB. Fi-
nally, the 3D visualization of the component is provided
by means of the Advanced.Shape visualizer of the
standard multibody library.

3.2 Model validation
The model has been thoroughly validated by means of two
simulation scenarios. Initially, the well-known Princeton
beam experiment (Bauchau et al., 2016) has been repro-
duced in order to validate the quasi-static behaviour of the
model. The beam is subject to a lateral load in different
root orientations ranging from 0 to 90 degrees. The setup
is briefly shown in fig. 5 while the geometric and material
parameters of the beam are shown in tab. 1. This experi-
ment is particularly effective in order to validate the static
deflection of the beam as well as the coupled bending/tor-

sional behaviour, due to the different relative orientation
of the load and beam.

Figure 5. The Princeton beam experiment, reference scheme

Length 0.508 m
Height 3.2024x10−3 m
Width 12.377x10−3 m

Axial S 2.842x106 N
Shearing K22 0.6401x106 N
Shearing K33 0.9039x106 N
Torsional H11 3.103 Nm2

Bending H22 36.28 Nm2

Bending H33 2.429 Nm2

Table 1. Princeton beam parameters

The simulations have been carried out in three differ-
ent loading conditions, namely P1 = 4448N, P2 = 8896N
and P3 = 13345N and the results have been compared with
simulations performed in the software Dymore(Dymore
Solutions, 2016) where a geometrically exact beam theory
is implemented. A photogram of the animation is shown
in fig. 6, where the green arrow on the tip of the bent beam
represents the applied load. Moreover, a substrucutred in-
stance has been tested in order to show the difference in
performance and accuracy. The beam has been divided in
5 elements (6 dofs each) placed in series by simply con-
necting five instances of the model. Figs. 7 and 8 show the
absolute displacement of the transverse components of the
beam with respect to the beam root orientation, while fig.
9 shows the twisting angle in the same circumstances. The
continuous lines represent the Dymore solutions while the
triangles represent the simulations performed in Dymola
(Dynasim AB). As shown in the figures, the results of the
single element model are in good accordance with the ex-
act solution in the first loading case (blue), while five sub-
structuring elements are sufficient to correctly reproduce
the exact solution in the other loading cases. Indeed, in the



second and third case, large displacements are expected
and a single element with a second order approximation
is not adequate. As expected from a theoretical point of
view, the proposed model is slightly stiffer because shear
deformations are not included. It is also worth to remark
that a null twisting angle (fig. 9) would be predicted by a
linearized beam model whilst the coupling effect between
bending and twisting is correctly captured by the present
formulation even with a single element.

Figure 6. The Princeton beam experiment, simulation visualiza-
tion

Figure 7. The Princeton beam experiment, transverse tip dis-
placement (v)

Figure 8. The Princeton beam experiment, transverse tip dis-
placement (w)

Figure 9. The Princeton beam experiment, twisting angle

In order to validate the dynamic behaviour of the model,
the classical planar spin-up manoeuver benchmark has
been considered (Berzeri and Shabana, 2002; Valembois
et al., 1997; Shi et al., 2001; Wu and Haug, 1988). A flex-
ible beam rotates about one end with a prescribed angular
law, a diagram of the mechanism is reported in fig.10. The
law describing the time evolution of the angle θ is the foll-
wing:

θ(t) =

{
Ω
T

[
t2
2 +( T

2π )
2(cos( 2πt

T )−1)
]
, t < T

Ω(t−T/2), t ≥ T
(36)

thus, the spin-up starts at t = 0 and ends at t = T , when a
constant angular velocity is reached, where it has been as-
sumed T = 15s in the considered experiment. This bench-
mark is widely used in literature in order to demonstrate
the effectiveness of the substructuring technique as well
as the robustness of nonlinear formulations. The follow-
ing geometrical data were assumed for the beam: length
L = 8m , cross sectional area A = 7.3 · 10−5m2, modulus
of elasticity E = 1.3359 · 1010N/M2, second moment of
inertia I = 8.218 · 10−9m4 and density ρ = 2766Kg/m3.



The tip transverse deflection for a 20 seconds simulation
is here compared with the results obtained with a com-
pletely different approach, thoroughly described in (Boer
et al., 2011). A single element beam has been used by re-
taining two additional normal modes in order to increase
accuracy. Thus the number of active dofs is five, consid-
ering only the planar components of the end node defor-
mation. Fig. 11 shows satisfactory results in terms of ac-
cordance between the two approaches. Moreover, the dy-

namics shown here is in good accordance with the other
results in literature (see (Boer et al., 2011; Wu and Haug,
1988)), and the maximum tip deflection is similar to other
numerical results as shown in tab. 2. The proposed formu-
lation captures correctly the geometric stiffening effect in-
duced by the rotation and overcomes the shortcomings of
the standard linear approach, while keeping low the com-
putational effort.

Model Number of elements Max. deflection [m]
Present formulation 1 (5 dofs) 0.536

SPACAR, nonlinear beam 4 (8 dofs) 0.5388
SPACAR, superelement 4 superelements (8 dofs) 0.5375

Wu and Haung (Wu and Haug, 1988) 6 substructure 0.543

Table 2. Maximum tip deflection, comparison with other simulation results

Figure 10. Planar spin-up, scheme of the setup

Figure 11. Planar spin-up, tip transverse deflection

4 Conclusion
In this paper, an approximated dynamic model for flexi-
ble beams is presented, including geometrically nonlinear

phenomena. The equations of motion for a generic flex-
ible body are developed starting from the approximation
of the Jaumann strain tensor under the small strain hy-
pothesis. Assuming that the deformation field of the con-
tinuum model can be expanded up to the second order, a
closed form expression of the equations of motion is pre-
sented including only a few additional terms with respect
to the standard floating frame of reference approach. Sub-
sequently, the proposed formulation is applied to slender
structures. A second order model is consistently derived
from a geometrically exact beam model. The finite ele-
ment approach is adopted in order to discretize the beam,
finally the Craig-Bampton method is applied to reduce the
number of degrees of freedom. The theoretical model
is implemented in the Modelica framework by adopting
an efficient approach where the invariant terms are com-
puted offline and the resulting model is fully integrated
in the Modelica multibody library. The model is finally
validated by means of comparison with well known lit-
erature benchmarks, the numerical results are compared
with simulations obtained by means of completely differ-
ent approaches. The model is suitable to perform small
strains, moderate displacements analysis and can be em-
ployed in large displacements cases by means of substruc-
turing, which is naturally managed in Modelica. The pro-
posed model will allow to consider the realistic behaviour
of slender beams subject to high angular velocities, as well
as to correctly consider the geometrical nonlinear phe-
nomena in slender beams. The development of this model
constitutes a step forward in the state of the art of the flex-
ible multibody Modelica models, leading to more efficient
models for real-world applications. The beam model, as
well as the other flexible multibody models developed by
the authors are freely available upon request, hence, the
author would encourage possible users to contact them.
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