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Abstract. An innovative base isolation system has been recently proposed for the retrofitting 

of existing buildings, in which the isolation layer is inserted under the building foundations so 

that the building, along with its foundations, is isolated from the surrounding soil. The isola-

tion layer resides in closely-spaced micro-tunnels, constructed under the entire width of the 

building. These micro-tunnels, along with the trenches around the building, isolate the struc-

ture from the surrounding soil. The execution of these micro-tunnels is the most critical con-

struction stage, because it may result in settlements which can damage the structure. In this 

paper, the behaviour of an existing structure, consisting of a masonry wall subjected to tun-

nelling-induced ground subsidence, is analysed. A parametric study is conducted using 2-D 

nonlinear finite element analyses to understand the role of key factors such as strength and 

stiffness of soil and masonry, roughness of soil-structure interface, excavation sequence of 

tunnels, wall dimensions and openings configuration. The study identifies the design variables 

which influence the most the risk of structural damage and suggests the most effective damage 

symptoms to be monitored during construction. 
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1 INTRODUCTION  

The usual base isolation design to improve the seismic resistance of existing buildings 

leads to extensive and intrusive manipulations of the construction body that severely alter the 

original structural configuration, thus resulting generally inapplicable to historical construc-

tions or whenever existing architectural features are of economic importance.  

An innovative way of isolating buildings from seismic actions has been proposed by 

Clemente and De Stefano [1][2], which, unlike conventional methods, does not involve any 

modification of the existing structure. The method calls for isolation of the building along 

with its foundation soil from the rest of the ground and consists in executing a series of close-

ly-spaced micro-tunnels under the building and in placing isolators within the thickness of the 

tunnels lining. The execution of micro-tunnels is the most critical construction stage of the 

proposed intervention, because it may result in settlements, and therefore can induce structur-

al or non-structural damage into the building. In order to keep damage below the desired 

thresholds, it is of paramount importance to develop adequate analytical, numerical and em-

pirical tools, which can accurately and reliably predict the effect of excavations, and execu-

tion procedures capable to minimize the expected damage. Furthermore, it is important to 

properly track, during construction, possible deviations between the expected and the actual 

response of the soil-structure system, so as to identify the necessary corrections, if needed, to 

the execution process (soil consolidation, modification of the tunnelling sequence, etc.).  

Surface and subsurface ground subsidence accompanying tunnelling operation, as well as 

the effect of the tunnel-related ground subsidence on the structures on surface, have received 

attention in the form of empirical, numerical and analytical studies [3][4][5][6][7][8][9]. 

These studies refer to single tunnels only, and were subsequently extended to the case of mul-

tiple tunnels [10][11][12]. Researchers, such as Boscardian & Cording [13] and Burland & 

Wroth [6], identified damage indicators for structures undergoing tunnel-induced settlements 

and used them to establish several levels of damage-thresholds; they used average horizontal 

strain, angular distortion/strain and deflection ratio in their studies. Various case studies have 

been done in the past where the tunnelling-induced damage was anticipated in terms of dam-

age-indicators; damage-thresholds were determined for them and building was monitored dur-

ing tunnel construction, keeping those damage-thresholds in mind. Those studies involved 

cases where deformation caused by one tunnel was the main source of damage on the existing 

structure. No studies are reported, to the best of the authors’ knowledge, regarding closely-

spaced multiple tunnels like the one discussed in the present application and the correlated 

structural damage.  

The present paper aims to investigate how closely-spaced micro-tunnelling can adversely 

affect the structural state of existing masonry buildings and how monitoring during construc-

tion can help to reduce the risk of unpredicted damage. To this purpose, accurate 2-D nonline-

ar analyses are performed, simulating the coupled soil-structure interaction problem during 

sequential micro-tunnelling execution. The influence of different design variables on the onset 

and development of structural damage (crack opening) is first studied, and design recommen-

dations are formulated regarding the best procedures to adopt in executing closely-spaced mi-

cro-tunnels so as to minimize damage. Correlations are then searched for between the extent 

of damage and different damage-indicators, and recommendations are finally inferred as to 

which indicators should be observed during monitoring of tunnel-construction.  
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2 THE INNOVATIVE ISOLATION SYSTEM   

The new solution proposed consists in the realization of an isolated platform under the 

foundations of the building, without touching the building itself. A discontinuity between the 

foundations and the soil is created by means of the insertion of horizontal pipes and the posi-

tioning of isolation devices at the horizontal diametric plane. Then the building is separated 

from the surrounding soil in order to allow the horizontal displacements required by the isola-

tion system. So the structure is seismically isolated but not interested by interventions that 

could modify its architectural characteristics, which is very important for historical buildings 

but also for large structures such as industrial plants [14][15].  

Even underground level are not modified but can be part of the seismically protected build-

ing. In more details the construction phases are the following:   

• a trench is first excavated of at one side of the building and pipes are inserted by means 

of auger boring or micro-tunnelling technique; the diameter of pipes should be ≥ 2 m, in 

order to allow the inspection of the isolation system; the pieces of pipe should have a 

particular shape and are composed by two portions, the lower and the upper sectors, re-

spectively, which are connected by means of removable elements.  

• the connection elements placed in correspondence of the isolation devices are removed 

and each pipe is joined with the two adjacent ones, for example by means of a rein-

forced concrete elements;  

• the isolation devices are positioned and the upper adjacent sectors are connected in cor-

respondence of the isolators;  

• successively also the other connection elements are removed, so the lower and upper 

sectors are definitely separated;  

• finally vertical walls are built along the four sides of the building.  

The construction phases could be preceded by a stiffening of the soil by using jet grouting 

technique or others. This allows avoiding collapses during the works and is absolutely due 

when the distance from close structures is low. The system allows also the realization of a 

tunnel for pedestrian or vehicles. The size of the pipes must guarantee the accessibility and 

the possibility to substitute the devices.  

 

Figure 1 :  The proposed method for seismic isolation  
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During the response to the earthquake the ground mass, added to the isolated structure as 

part of the mechanical system in relative motion with respect to the supporting ground, can 

play a positive role thanks to a more regular mass distribution and reduction of the overturn-

ing moment. It makes easy to obtain a very long fundamental period and, consequently, a 

large acceleration reduction. The trench surrounding the isolated structure, if necessary, can 

be used to install supplementary damping devices to keep under control the relative displace-

ments. 

The following chapter is devoted to the numerical settlement prediction during the con-

struction of the micro-tunnels. A specific case study is explored in detail as a simulated exper-

iment. Results are not fully extendable to every possible application, with different soil 

conditions, different building configurations and bore depth. In specific cases a previous me-

chanical improvement of the ground can be required. Anyway the numerical simulation can 

suggest some general conclusions 

3 THE NUMERICAL MODEL  

3.1 The baseline model 

The 2-D numerical model used in the parametric study has been built using the commercial 

finite-element-method (FEM) software DIANA [16]. A general view of the model is reported 

in Figure 2, where two different opening configurations are exemplified, either with or with-

out crack pattern and mesh discretization. Soil is modelled as a homogeneous, isotropic, line-

ar-elastic perfectly-plastic material with Mohr-Coulomb yield surface and zero-tension cut-off. 

The soil is represented with 8-nodes quadrilateral plane-strain elements; few soil elements, 

inside and around excavation, are modelled as 6-nodes triangular plane-stress elements [17]. 

        

Figure 2 :  The two different opening configurations for the 24.2 m long wall (1-Door on the left, 2-Door on the 

right), either with or without showing the final crack pattern and mesh discretization 

Masonry is modelled as a homogeneous and isotropic material. A linear response is as-

sumed for masonry in the elastic regime, while a smeared crack approach with strain decom-

position is used to simulate its behaviour in cracking. A fixed-crack model with linear tension 

softening and constant tension cut-off criteria is used to simulate crack initiation and propaga-

tion (Figure 3). Masonry wall is modelled with 8-nodes quadrilateral plane-stress elements. 

The interaction between soil and masonry is modelled through interface elements, relating 

normal and shear forces to normal and shear relative displacements across the interface. The 

values of interface stiffness are chosen such that the interface allows slip (tangential move-

ment) between soil and masonry at very low shear stress. Interface is represented as 6-nodes 

line-interface elements. 

The lining and the lintel are modelled as a linear-elastic, isotropic and homogeneous mate-

rial; lining is represented as 3-nodes curved shell elements and lintel with 3-nodes 2-D beam 

elements. The bottom and lateral boundaries of soil are constrained in perpendicular direction; 
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top boundary is free to move in both directions. The model is loaded with gravity and super-

imposed loads, including dead and live loads acting on floors. In order to simplify the prob-

lem, dampers are not included in the model. 

 

Figure 3 :  Masonry constitutive law adopted in simulations 

3.2 Modelling excavation process 

Simulation of sequential tunneling obeys the following procedure. Initial soil stresses are 

established first, which are based on unit weight of soil and coefficient of earth pressure at 

rest; displacements are suppressed in this phase. Next step involves activation of masonry el-

ements along with their self-weight and superimposed load. Then the excavation process 

modelled. Namely: 

• Soil elements, corresponding to the first tunnel, are removed, and the model is allowed 

to establish equilibrium under gravity and superimposed loads. No internal pressure is 

applied on the periphery of excavation. DIANA’s ‘phased analysis’ is used for this pur-

pose. 

• Soil elements, corresponding to the second tunnel, are then removed; lining elements 

are added around the first tunnel and the model is allowed to establish equilibrium un-

der gravity and superimposed loads. No internal pressure is applied on the periphery of 

the excavation. 

• The previous step is repeated for the remaining tunnels. 

In the above steps, it is assumed that the “annular space” or the “gap” (i.e. the space be-

tween soil and lining) is the main source of volume loss, owing to the relatively stiffer soil 

conditions and small size of tunnel. Volume loss is simulated by allowing the tunnel to under-

go instantaneous settlement, with no pressure applied on the excavated boundary, before the 

installation of lining elements. Since the introduction of the lining elements into the model 

prevents further closure of the gap, the model is meant to be representative of a real tunnelling 

process in which the gap must be completely filled with grout after installation of lining. 

3.3 Wall configurations and excavation sequences in the parametric study 

The parametric study has been conducted assuming three different values of the length of 

the masonry wall (24.2 m, 15.5 m, and 12.6 m) while keeping constant the height of the wall 

and the diameter (D) of the tunnels. Consequently, the number of tunnels required to cover 

each wall length are: 11 tunnels for the 24.2 m wall; 7 tunnels for the 15.5 m; and 6 tunnels 

for the 12.6 m wall.  

Two types of opening configurations are considered for the 24.2 m wall, either 1-Door or 

2-Door (Figure 2), while other walls are analysed with one type of opening configuration only. 

Three construction sequences are considered for the 11-tunnel assembly, three for the 7-tunnel 

assembly, one for the 6-tunnel assembly. The adopted sequences are shown in Figures 4 to 6. 

For all the models, soil bottom boundary is kept at 8D from the centre of tunnels, the side 
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boundary is kept at 8D from the centre of the outermost tunnels, and the depth of the centre of 

tunnels is chosen as 6 m for all models.  

3.4 Geometric and material properties 

Material properties adopted for soil and masonry are shown in Tables 1 and 2, where E is 

the elastic modulus, c is the cohesion,  is the unit weight,  is the Poisson’s ratio, Ψ is the 

dilatancy angle, is the friction angle and Ko is the coefficient of lateral earth pressure at rest. 

Material parameters adopted for lining are:  = 24.5 kN/m
3
, E = 21 GPa,  = 0.15. For lintel, 

the same and  are adopted as for lining, but E is reduced to 15 GPa. The normal stiffness of 

the interface elements is selected as 4x10
8 

N/m
3
, while its tangential stiffness is 5 N/m

3
, as 

suggested by literature. 

In all the models, the height and the thickness of the wall are kept at, respectively, 6.75 m 

and 0.22 m; the thickness of lining at 0.1 m; the cross-section of the lintel at 0.22 x 0.16 m; 

the diameter of the tunnels at 2 m; and the distance between their centre at 2.2 m. 

 
Tunnel 

assembly 
E 

(MPa) 
c 

 (kPa) 
 

(kN/m3) 
  
(-) 

Ψ 
(°) 


(°)

Ko 

(-) 

11 200 80 17.5 0.3 0 13 0.47 
7 150 70 17.5 0.3 0 13 0.47 
6 50 70 17.5 0.3 0 13 0.47 

Table 1 :  Material properties for soil 

Tunnel as-
sembly 

Shear retention 
factor 

E 
(GPa) 

Ft 
(kPa) 

Gf 
(N/m) 

 
(kN/m3) 

  
(-) 

11 0.01 9 400 50 20.5 0.2 
7 0.01 5 275 45 20.5 0.2 
6 0.01 4.5 200 45 20.5 0.2 

Table 2 :  Material properties for masonry wall 

 

Figure 4 :  Sequence of excavation for the 6-tunnel assembly 

 

Figure 5 :  Sequences of excavation for the 7-tunnel assembly 

 

Figure 6 :  Sequences of excavation for the 11-tunnel assembly 
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4 RESULTS  

Results from different cases are looked at in terms of, on the one hand, the extent of dam-

age, and, on the other hand, a set of different possible damage indicators or symptoms, ob-

served in their respective evolution during the excavation process. The extent of damage is 

expressed by a measure of crack opening, either in mean or in maximum terms.  

Many different observation variables are alternatively considered as possible damage indi-

cators or symptoms, including: maximum angular strain, deflection ratio, maximum average 

horizontal strain, maximum differential settlement, tilt and maximum change in slope. Deflec-

tion ratio, maximum average horizontal strain and maximum angular strain have already been 

extensively used as damage indicators in the literature [13][6], whilst a correlation between 

the maximum change of slope and damage has not been presented yet to the best of the 

authors’ knowledge. In the present work, no apparent correlation with damage has been found 

for tilt and maximum differential settlement, so results will be presented in terms of the fol-

lowing quantities only:  

• Maximum average horizontal strain (εh), defined as the maximum change in length of 

wall at the foundation level over a distance of 1m; 

• Maximum change in slope (Δθ), defined as the maximum of the second derivative of 

the vertical settlement profile; 

• Angular strain (β) and deflection ratio (DR), defined as explained in Figure 7; 

• Maximum crack width (crack max) and mean crack width (crack mean). 

 

Figure 7 :  Angular strain (β) and deflection ratio (DR)  

Analyses were carried out for the 6-, 7-, 11-tunnel assemblies. Only the 11-tunnels assem-

bly is shown here, with two different opening configurations (one door and two doors) and 

different excavation sequence. Two different excavation sequences were considered for the 

case of opening configuration with one door. Results are reported in Figures 8-19. Figures in 

dotted lines depict the evolution of damage (in terms of maximum crack width) with the pro-

gression of excavation stages; figures in continuous lines present the damage-symptom corre-

lation at each excavation stage. Unlike the previous cases, tunnel-related damage started from 

the first excavation in this case. This is due to the fact that the excavation process started from 

the central portion for both excavation sequences (see again Figure 6). 

The last excavation stage inflicted much more damage than the other stages in excavation 

sequence 1, while the sixth excavation stage proved to be the one inducing most damage in 

excavation sequence 2. Overall, excavation sequence 2 inflicted much more damage than the 

excavation sequence 1. 

The behaviour of wall is very different for the two excavation sequences. The only symp-

tom showing a satisfactory correlation with damage for both sequences is . 

In the case of opening configuration with two doors, three different excavation sequences 

were considered in this case. Results are reported in Figures 20-31. The tunnel-related damage 

383



Alessandro De Stefano, Paolo Clemente, Stefano Invernizzi, Emiliano Matta, Antonino Quattrone  

started from the first excavation for sequence 1 and 2, while it started from the third excava-

tion for sequence 3; excavation commenced from the outermost tunnels for sequence 3 (Fig-

ure 6). 

 

Figure 8 :  Crack max evolution Figure 9 :  Crack max evolution Figure 10 : DR vs. crack max 

 

Figure 11 :  DR vs. crack max Figure 12 :  β vs. crack max Figure 13 :  β vs. crack max 

 

Figure 14 :  εh vs. crack max Figure 15 :  εh vs. crack max Figure 16 :  Δθ vs. crack max  

   

Figure 17 :  Δθ vs. crack max   Figure 18 :  Δθ vs. crack mean   Figure 19 : Δθ vs. crack mean  

The sequence 2 inflicted much more damage than the other two sequences. Excavation se-

quence 3 can be adopted for this case along with β as damage-indicator. Excavation sequenc-

es 1 and 3 gave highly nonlinear and chaotic correlation between DR/εh and maximum crack 

width; excavation sequence 2 resulted in regular nonlinear relationship between DR and εh, 
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and fairly linear relationship between average horizontal strain and maximum crack width. 

The correlation between β and maximum crack width is almost similar for all three sequences. 

 

Figure 20 :  Crack max evolution Figure 21 :  Crack max evolution Figure 22 :  Crack max evolution 

 

Figure 23 :  DR vs. crack max Figure 24 :  DR vs. crack max Figure 25 :  DR vs. crack max 

 

Figure 26 :  β vs. crack max Figure 27 :  β vs. crack max Figure 28 :  β vs. crack max 

 

Figure 29 :  εh vs. crack max Figure 30 :  εh vs. crack max Figure 31 :  εh vs. crack max 

5 CONCLUSIONS AND RECOMMENDATIONS  

The present paper aimed at investigating how closely-spaced micro-tunnelling can inflict 

damage onto existing masonry buildings and how monitoring during construction can help to 

reduce the risk of damage. In the light of the results discussed above, the following conclu-

sions can be drawn: 
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• For any given wall configuration/geometry, the extent of damage at the completion of 

the entire excavation process strongly depends on the excavation sequence. Damage is 

much less when excavation starts from outermost tunnels. 

• In all simulated cases, if the proper excavation sequence is adopted in design, the max-

imum crack experienced during excavation is limited to values ranging from 0.05 to 

0.35 mm depending on the case at hand; this can be regarded as a “very slight” damage 

according to the literature. This result is acknowledged to be strongly dependent on the 

geometric and mechanical parameters of the structure and the soil as well as on the de-

sign of micro-tunnels. In order to generalize this result, however, simulations need to be 

extended to include a wider range of mechanical/geometrical properties of soil and ma-

sonry. These preliminary results suggest the feasibility of the proposed, innovative base 

isolation system. 

• Different possible damage indicators or symptoms have been monitored during simula-

tions, some taken from the literature and others newly proposed. In general no simple 

correlation can be identified between damage and any particular symptom. No symptom 

appears to neatly prevail over the others in all explored simulation cases. On average, 

the best damage indicators, capable of well tracking damage evolution during construc-

tion, appear to be the maximum average horizontal strain, εh, and the maximum change 

in slope, Δθ, which provide a nearly linear relationship with the maximum or the mean 

crack width in several cases. The worst damage indicators appear to be the tilt and the 

maximum differential settlement. These results suggest that “global” indicators based 

on the knowledge of few settlement values along the structure, which are typically mon-

itored in common practice, are generally insufficient to reliably track the evolution of 

damage in a problem of closely-spaced multiple tunnels. “Local” indicators, unfortu-

nately requiring a larger number of measurement points from closely-spaced sensors, 

appear much more representative of the actual damage extent in the present application. 

Image acquisition and processing monitoring systems (e.g. laser-scanner) or distributed 

fibre optic sensoring technologies seem the most indicated to this purpose. 
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