103 research outputs found

    Measurement of intervertebral cervical motion by means of dynamic X-ray image processing and data interpolation

    Get PDF
    Accurate measurement of intervertebral kinematics of the cervical spine can support the diagnosis of widespread diseases related to neck pain, such chronic whiplash dysfunction, arthritis, segmental degeneration. The natural inaccessibility of the spine, its complex anatomy and the small range of motion only permit concise measurement in-vivo. Low dose X-ray fluoroscopy allows time-continuous screening of cervical spine during patient’s spontaneous motion. To obtain accurate motion measurements, each vertebra was tracked by means of image processing along a sequence of radiographic images. To obtain a time-continuous representation of motion and to reduce noise in the experimental data, smoothing spline interpolation was used. Estimation of intervertebral motion for cervical segments was obtained by processing patient’s fluoroscopic sequence: intervertebral angle and displacement and the instantaneous centre of rotation were computed. The RMS value of fitting errors resulted about 0.2 degree for rotation and 0.2 mm for displacement

    Measurement of intervertebral cervical motion by means of dynamic X-ray image processing and data interpolation

    Get PDF
    Accurate measurement of intervertebral kinematics of the cervical spine can support the diagnosis of widespread diseases related to neck pain, such as chronic whiplash dysfunction, arthritis, and segmental degeneration. The natural inaccessibility of the spine, its complex anatomy, and the small range of motion only permit concise measurement in vivo. Low dose X-ray fluoroscopy allows time-continuous screening of cervical spine during patient's spontaneous motion. To obtain accurate motion measurements, each vertebra was tracked by means of image processing along a sequence of radiographic images. To obtain a time-continuous representation of motion and to reduce noise in the experimental data, smoothing spline interpolation was used. Estimation of intervertebral motion for cervical segments was obtained by processing patient's fluoroscopic sequence; intervertebral angle and displacement and the instantaneous centre of rotation were computed. The RMS value of fitting errors resulted in about 0.2 degree for rotation and 0.2 mm for displacements

    Electromyography in the Study of Muscle Reactions to Vibration Treatment

    Get PDF
    Electromyography (EMG) is a common used technique to evaluate muscular activity. Analysis of EMG recordings is important for assessing muscle activation, its relationship to the force developed during specific tasks and for evaluating fatigue processes occurring in response to physical activity. Electromyography can be performed using different types of electrodes, depending on the specific analysis: surface (or skin) electrodes or inserted electrodes (wire and needle); the first it is used to monitor the overall activity of a muscle while the second is generally used to reveal the electrical activity of a nerve root. (De Luca, 1997, Basmajan and De Luca, 1985) Electrode types and configurations, as well as associated instrumentation, influence the quality of the EMG signal detected and displayed, recorded or processed (Merletti et al, 2001; Saitou et al, 2000; Rainoldi et al, 2004, Nishihara et al, 2008). Various studies have been dedicated to the matter and guidelines in EMG recording are available (Basmajan and De Luca, 1985, Hermens H.J. et al, 1999). Surface electromyography (SEMG) analysis is a largely used EMG recording method as it is non–invasive, safe, it does not cause pain and it is simple to perform. Root mean square (RMS) of the surface EMG signals is often used as a concise quantitative index of muscle activity; indeed, electromyography devices often provide EMG RMS output. SEMG is often used for the assessment of muscle activity occurring in response to physiological or to externally applied stimuli, i.e. vibratory stimulation. Vibration stimulus is a mechanical muscle excitation, applied generally to a tendon, a muscle or to the body as a whole, aimed to activate muscles by eliciting stretch reflexes. Local tendon vibrations induce activiy of the muscle spindle Ia fibers, mediated by monosynaptic and/or polysynaptic pathways; the reflex muscle contraction that arises in response to such vibratory stimulus has been named Tonic Vibration Reflex (TVR). (Roll et al, 1989; Bongiovanni and Hagbart, 1990; Romaiguére et al, 1991; Person and Kozhina, 1992; Martin and Park, 1997) As well as in other external stimulation, vibratory muscle activation can be examined by the analysis of electromyography recordings. Many studies report a significant increase of EMG RMS values in the lower body muscles during vibration training, these changes suggested an increase in neuromuscular activity (Cardinale and Bosco, 2003; Verschueren et al, 2004). Specific WBV frequencies seem to produce a higher EMG RMS signal than others (Cardinale and Lim 2003). However, as well as in every surface bio-potential recording, during local or whole body vibration treatment the EMG signal can be affected by artifacts. Motion artifacts may in fact arise from relative motion between electrodes and skin and also between skin layers. The only skin stretch may result in a variation of electrode potential (Turker, 1993, De Talhouet and Webster, 1996; Ödman and Öberg, 1982, Searle and Kirkup, 2000, Tam and Webster, 1977). In classical clinical EMG recordings (isokinetic, isotonic, gait, etc.), frequency content of motion artifact is considered below 10-20 Hz, then the general approach to motion artifact reduction is to apply a high-pass filter (e.g. with a cut-off frequency of 20 Hz). During vibratory stimulation the artifact frequency contents, typically limited at vibratory frequency and its har onics, extend within the EMG spectrum (Fratini et al, 2009) and standard high-pass filters are not suitable for filtering out this artifact. In the majority of the cases appropriate filtering is used to remove motion artifacts before any signal analysis, while in some other they are used to characterize the mechanical response of the tissue to a specific stimulus (mechanogram) and its correlation to the stimulus itself (Person and Kozhina, 1992; Fratini et al, 2009). With this chapter the authors aim to investigate the use and the efficacy of surface electromyography in the study of muscle response to vibration treatments. A review ofvibration characterization and analysis is reported, SEMG recordings of Rectus Femori, Vastus Medialis and Vastus Lateralis were collected and analyzed. Specific artifacts were revealed and the role of those artifact was investigated and assessed. Since the use of vibratory stimulus produces peculiar EMG response a specific model was adopted to describe the EMG synchronization effect and its influence on the resultant recorded muscle activity (Person and Kozhina, 1992)

    On the power spectrum of motor unit action potential trains synchronized with mechanical vibration

    Get PDF
    Objective: Provide a definitive analysis of the spectrum of a motor unit action potential train elicited by mechanical vibratory stimulation via a detailed and concise mathematical formulation. Experimental studies demonstrated that motor unit action potentials are not exactly synchronized with the vibratory stimulus but show a variable latency jitter, whose effects have not been investigated yet. Methods: Synchronized action potential train was represented as a quasi-periodic sequence of a given motor unit waveform. The latency jitter of action potentials was modeled as a Gaussian stochastic process, in accordance to previous experimental studies. Results: A mathematical expression for power spectrum of a synchronized motor unit action potential train has been derived. The spectrum comprises a significant continuous component and discrete components at the vibratory frequency and its harmonics. Their relevance is correlated to the level of synchronization: the weaker the synchronization, the more relevant the continuous spectrum. EMG rectification enhances the discrete components. Conclusion: The derived equations have general validity and well describe the power spectrum of actual EMG recordings during vibratory stimulation. Results are obtained by appropriately setting the level of synchronization and vibration frequency. Significance: This study definitively clarifies the nature of changes in spectrum of raw EMG recordings from muscles undergoing vibratory stimulation. Results confirm the need of motion artifact filtering for raw EMG recordings during stimulation and strongly suggests to avoid EMG rectification that significantly alters the spectrum characteristics

    Characterisation of the transient mechanical response and the electromyographical activation of lower leg muscles in whole body vibration training

    Get PDF
    The aim of this study is to characterise the transient mechanical response and the neuromuscular activation of lower limb muscles in subjects undergoing Whole Body Vibration (WBV) at different frequencies while holding two static postures, with focus on muscles involved in shaping postural responses. Twenty-five participants underwent WBV at 15, 20, 25 and 30 Hz while in hack squat or on fore feet. Surface electromyography and soft tissue accelerations were collected from Gastrocnemius Lateralis (GL), Soleus (SOL) and Tibialis Anterior (TA) muscles. Estimated displacement at muscle bellies revealed a pattern never highlighted before that differed across frequencies and postures (p < 0.001). After stimulation starts, muscle oscillation peaks, drops and further stabilises, suggesting the occurrence of a neuromuscular activation to reduce the vibration-induced oscillation. The oscillation attenuation at the SOL muscle correlated with its increased activation (rho = 0.29, p < 0.001). Furthermore, only specific WBV settings led to a significant increase in muscle contraction: WBV-induced activation of SOL and GL was maximal in fore-feet (p < 0.05) and in response to higher frequencies (30 Hz vs 15 Hz, p < 0.001). The analysis of the mechanical dynamics of lower leg muscles highlights a resonant response to WBVs, that for the SOL correlates to the increased muscle activation. Despite differing across frequencies and postures, this resonant behaviour seems to discourage the use of dynamic exercises on vibrating platforms. As for the most efficient WBV combination, calf muscle response to WBVs is maximised if those muscles are already pre-contracted and the stimulation frequencies are in the 25-30 Hz range

    A Piezoresistive Sensor to Measure Muscle Contraction and Mechanomyography

    Get PDF
    Measurement of muscle contraction is mainly achieved through electromyography (EMG) and is an area of interest for many biomedical applications, including prosthesis control and human machine interface. However, EMG has some drawbacks, and there are also alternative methods for measuring muscle activity, such as by monitoring the mechanical variations that occur during contraction. In this study, a new, simple, non-invasive sensor based on a force-sensitive resistor (FSR) which is able to measure muscle contraction is presented. The sensor, applied on the skin through a rigid dome, senses the mechanical force exerted by the underlying contracting muscles. Although FSR creep causes output drift, it was found that appropriate FSR conditioning reduces the drift by fixing the voltage across the FSR and provides voltage output proportional to force. In addition to the larger contraction signal, the sensor was able to detect the mechanomyogram (MMG), i.e., the little vibrations which occur during muscle contraction. The frequency response of the FSR sensor was found to be large enough to correctly measure the MMG. Simultaneous recordings from flexor carpi ulnaris showed a high correlation (Pearson's r > 0.9) between the FSR output and the EMG linear envelope. Preliminary validation tests on healthy subjects showed the ability of the FSR sensor, used instead of the EMG, to proportionally control a hand prosthesis, achieving comparable performances

    Forcecardiography: A Novel Technique to Measure Heart Mechanical Vibrations onto the Chest Wall

    Get PDF
    This paper presents forcecardiography (FCG), a novel technique to measure local, cardiac-induced vibrations onto the chest wall. Since the 19th century, several techniques have been proposed to detect the mechanical vibrations caused by cardiovascular activity, the great part of which was abandoned due to the cumbersome instrumentation involved. The recent availability of unobtrusive sensors rejuvenated the research field with the most currently established technique being seismocardiography (SCG). SCG is performed by placing accelerometers onto the subject’s chest and provides information on major events of the cardiac cycle. The proposed FCG measures the cardiac-induced vibrations via force sensors placed onto the subject’s chest and provides signals with a richer informational content as compared to SCG. The two techniques were compared by analysing simultaneous recordings acquired by means of a force sensor, an accelerometer and an electrocardiograph (ECG). The force sensor and the accelerometer were rigidly fixed to each other and fastened onto the xiphoid process with a belt. The high-frequency (HF) components of FCG and SCG were highly comparable (r > 0.95) although lagged. The lag was estimated by cross-correlation and resulted in about tens of milliseconds. An additional, large, low-frequency (LF) component, associated with ventricular volume variations, was observed in FCG, while not being visible in SCG. The encouraging results of this feasibility study suggest that FCG is not only able to acquire similar information as SCG, but it also provides additional information on ventricular contraction. Further analyses are foreseen to confirm the advantages of FCG as a technique to improve the scope and significance of pervasive cardiac monitoring

    Investigating the role of capacitive coupling between the operating table and the return electrode of an electrosurgery unit in the modification of the current density distribution within the patients’ body

    Get PDF
    Background: Electrosurgery units are widely employed in modern surgery. Advances in technology have enhanced the safety of these devices, nevertheless, accidental burns are still regularly reported. This study focuses on possible causes of sacral burns as complication of the use of electrosurgery. Burns are caused by local densifications of the current, but the actual pathway of current within patient's body is unknown. Numerical electromagnetic analysis can help in understanding the issue. Methods: To this aim, an accurate heterogeneous model of human body (including seventy-seven different tissues), electrosurgery electrodes, operating table and mattress was build to resemble a typical surgery condition. The patient lays supine on the mattress with the active electrode placed onto the thorax and the return electrode on his back. Common operating frequencies of electrosurgery units were considered. Finite Difference Time Domain electromagnetic analysis was carried out to compute the spatial distribution of current density within the patient's body. A differential analysis by changing the electrical properties of the operating table from a conductor to an insulator was also performed. Results: Results revealed that distributed capacitive coupling between patient body and the conductive operating table offers an alternative path to the electrosurgery current. The patient's anatomy, the positioning and the different electromagnetic properties of tissues promote a densification of the current at the head and sacral region. In particular, high values of current density were located behind the sacral bone and beneath the skin. This did not occur in the case of non-conductive operating table. Conclusion: Results of the simulation highlight the role played from capacitive couplings between the return electrode and the conductive operating table. The concentration of current density may result in an undesired rise in temperature, originating burns in body region far from the electrodes. This outcome is concordant with the type of surgery-related sacral burns reported in literature. Such burns cannot be immediately detected after surgery, but appear later and can be confused with bedsores. In addition, the dosimetric analysis suggests that reducing the capacity coupling between the return electrode and the operating table can decrease or avoid this problem

    A Piezoresistive Array Armband With Reduced Number of Sensors for Hand Gesture Recognition

    Get PDF
    Human machine interfaces (HMIs) are employed in a broad range of applications, spanning from assistive devices for disability to remote manipulation and gaming controllers. In this study, a new piezoresistive sensors array armband is proposed for hand gesture recognition. The armband encloses only three sensors targeting specific forearm muscles, with the aim to discriminate eight hand movements. Each sensor is made by a force-sensitive resistor (FSR) with a dedicated mechanical coupler and is designed to sense muscle swelling during contraction. The armband is designed to be easily wearable and adjustable for any user and was tested on 10 volunteers. Hand gestures are classified by means of different machine learning algorithms, and classification performances are assessed applying both, the 10-fold and leave-one-out cross-validations. A linear support vector machine provided 96% mean accuracy across all participants. Ultimately, this classifier was implemented on an Arduino platform and allowed successful control for videogames in real-time. The low power consumption together with the high level of accuracy suggests the potential of this device for exergames commonly employed for neuromotor rehabilitation. The reduced number of sensors makes this HMI also suitable for hand-prosthesis control
    • …
    corecore