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Human machine interfaces (HMIs) are employed in a broad range of applications,
spanning from assistive devices for disability to remote manipulation and gaming
controllers. In this study, a new piezoresistive sensors array armband is proposed for
hand gesture recognition. The armband encloses only three sensors targeting specific
forearm muscles, with the aim to discriminate eight hand movements. Each sensor
is made by a force-sensitive resistor (FSR) with a dedicated mechanical coupler and
is designed to sense muscle swelling during contraction. The armband is designed
to be easily wearable and adjustable for any user and was tested on 10 volunteers.
Hand gestures are classified by means of different machine learning algorithms, and
classification performances are assessed applying both, the 10-fold and leave-one-out
cross-validations. A linear support vector machine provided 96% mean accuracy across
all participants. Ultimately, this classifier was implemented on an Arduino platform and
allowed successful control for videogames in real-time. The low power consumption
together with the high level of accuracy suggests the potential of this device for
exergames commonly employed for neuromotor rehabilitation. The reduced number of
sensors makes this HMI also suitable for hand-prosthesis control.

Keywords: muscle sensors array, piezoresistive sensor, human–machine interface, hand gesture recognition,
support vector machine, exergaming

INTRODUCTION

Human machine interfaces (HMIs) are becoming increasingly widespread with applications
spanning from assistive devices for disability, muscle rehabilitation, prosthesis control, remote
manipulation, and gaming controllers (McKirahan and Guccione, 2016; Boy, 2017; Beckerle et al.,
2018). Being the hand extremely important in one’s life, an entire field of HMI is dedicated to
hand gesture recognition applications (Arapi et al., 2018; Shukla et al., 2018). Generally, visual,
electromyographic, or inertial sensors are the most used technologies for detecting hand gestures
(Cho et al., 2017; Ghafoor et al., 2017; Bisi et al., 2018; Polfreman, 2018). Visual-based hand gesture
recognition systems do not need any device to wear, allowing for extreme freedom of use. Such
remote sensing is very attractive, but its performances are heavily influenced by many factors such
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as camera field of view, challenging image processing,
illumination conditions, objects overlapping, etc. (Chakraborty
et al., 2017; Abraham et al., 2018). Devices based on surface
electromyography (sEMG or simply EMG) recordings (Geng
et al., 2016; Du et al., 2017) need electrodes in steady contact with
the skin, and they are prone to motion artifacts, electromagnetic
noise, and crosstalk with other biopotentials. They also require
real-time processing of the raw sEMG signals to extrapolate
useful features (e.g., sEMG envelope/RMS) (Parajuli et al., 2019).
As example, Myo Armband by Thalmic Labs1, a commercial
device based on eight sEMG sensors and an inertial platform,
allows the user to interface via Bluetooth with PCs or mobile
devices to control supported applications (Nymoen et al., 2015;
Sathiyanarayanan and Rajan, 2016; Myoband, 2019) including
robot motion (Bisi et al., 2018).

As an alternative to sEMG, other sensors can monitor the
mechanical muscular activity, and some are briefly presented
below. A pressure sensors array coupled to air-bladders mounted
on an armband was proposed to detect hand motion (accuracy
of 90%) by monitoring the swelling of muscles (Jung et al.,
2015). The air bladders are cumbersome, uncomfortable, and
not widely adaptable. A wristband composed of an array of
barometric pressure sensors was proposed to estimate tendons
and muscle motions during gestures (Zhu et al., 2018), reaching
a classification accuracy of wrist gestures of 98%. A combination
of sEMG electrodes and microphones (Caramiaux et al., 2015)
was used to detect both electrical muscle activity and the
mechanomyogram (MMG – i.e., mechanical vibrations produced
during muscle contraction). The microphones presented high
sensitivity to noise and motion artifacts, in addition to the
aforementioned EMG problems. A conventional ultrasound
probe fixed to the forearm was proposed for finger motion
recognition, proving accuracy of 96% (Huang et al., 2017).
This approach resulted very cumbersome, uncomfortable, and
required a complex image processing for gestures features
extraction. Furthermore, piezoelectric sensors were used to
estimate finger gestures (accuracy of 97%) by recording the
vibrations and shape changes that occur at the wrist due to
muscles and tendons motions (Booth and Goldsmith, 2018).
These kinds of sensors could also be employed to harvest
energy from body movements, including upper limb motion
(Elahi et al., 2018).

Other recent studies (Giovanelli and Farella, 2016) presented
devices for gesture recognition based on an array of force-
sensitive resistors (FSRs2) (Interlink Electronics, 2019).
A combination of two sEMG and four FSR sensors, mounted
on a wrist strap, can be used to classify finger movements
scoring accuracy of 96% (McIntosh et al., 2016). An armband
equipped with 16 FSR sensors positioned on both wrists and
forearms (Jiang et al., 2017) allowed the classification of several
hand gestures with an accuracy of about 97%. A similar device
equipped with eight FSR sensors, tested on amputees (Cho
et al., 2016) while trying to mirror different hand grips in their
residual forearm muscles, yielded an accuracy of 70%. Moreover,

1https://support.getmyo.com
2https://www.interlinkelectronics.com/request-data-sheets

a high-density grid of 126 FSR sensors (Radmand et al., 2016)
embedded in a forearm prosthetic socket and tested on healthy
subjects to recognize arm positions, yielded an accuracy of 99.7%.

However, the approaches proposing pressure sensors wrapped
around the wrist do not directly monitor muscle contraction, but
rather tension of tendons. Moreover, even in the cases of FSR
arrays applied on the forearm, to the best of our knowledge, the
detected signals were not proven to be equivalent to EMG.

The aim of this study was to investigate the possibility to
recognize hand gestures by monitoring the contractions of a
reduced number of specific forearm muscles, via the bespoke
FSR-based sensors, which demonstrated to provide signals
quite similar to the EMG linear envelope (EMG-LE) (Esposito
et al., 2018). To reach this goal, a new gesture recognition
armband is presented; it is equipped with only three FSR-
based sensors, applied on specific forearm muscles to recognize
eight hand gestures. The armband is designed to be easily
wearable and adjustable for any user. Thanks to the similarity
with the EMG-LE (Esposito et al., 2018), the device could
be reconfigured to resemble previous, well-established EMG-
based HMIs (e.g., exergaming applications for patients during
neuromotor rehabilitation) (Ma and Bechkoum, 2008).

MATERIALS AND METHODS

Piezoresistive Array Armband Design
The armband consists of three piezoresistive FSRs (Interlink FSR
402) mounted on an inextensible band by means of 3D printed
rigid supports (Figure 1). An FSR changes its electrical resistance
in the function of the applied force (Interlink Electronics, 2019).
The FSR active area is suitably mechanically coupled to the
muscle through a rigid dome, which enables the measurement
of muscle volume changes during contraction (Esposito et al.,
2018). The support was designed with a housing site for the
FSR, and an opening to allow sensor sliding along the band
and precise positioning on a target muscle. The armband can
be wrapped around user’s forearm and fastened with a Velcro
strip in order to measure muscle contractions and recognize hand
gestures. Indeed, each gesture generates a characteristic force
distribution on the sensors, and this allows discriminating the
intentional movements.

Given the similarity between the FSR-based sensor output and
the EMG-LE (Esposito et al., 2018), the muscle sensors should
be positioned above the muscle belly as for EMG detection.
The chosen muscles should be superficial to allow advantageous
signal to noise ratio. Moreover, since the FSR-based sensors are
embedded in an armband, the pick-up points should belong to
a circumference that wraps around the forearm. Three forearm
muscles were preferred to better discriminate the different hand
gestures. In detail, FSR1 was applied on flexor carpi ulnaris,
FSR2 on flexor carpi radialis, and FSR3 on extensor digitorum.
The armband was positioned proximally at 25% of the distance
between the olecranon and the process styloideus ulnae of
the right forearm (Figure 2). Indeed, a functional–anatomical
analysis of the forearm muscles (Drake et al., 2014) revealed
that flexor carpi ulnaris is mainly involved in wrist flexion and
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FIGURE 1 | Piezoresistive array armband: Left, the armband with three FSRs; Right, an enlargement of the FSR sensor mounted on its 3D printed support with
actual dimensions.

FIGURE 2 | Placements of FSRs on forearm muscles. (A) Ventral view of right forearm: FSR2 sensor on flexor carpi radialis; (B) Dorsal view of the right forearm:
FSR1 on flexor carpi ulnaris and FSR3 on extensor digitorum; (C) Right forearm cross-section: FSRs placement onto the aforementioned muscles.

FIGURE 3 | FSR sensors conditioning circuit based on mirror current circuits.

wrist adduction; flexor carpi radialis in wrist flexion and wrist
abduction; and extensor digitorum in fingers extension, fingers
abduction, and wrist extension.

A current mirror (Figure 3) was used as a conditioning circuit
for each FSR sensor (Esposito et al., 2019a,b). It was made of
a pair of common npn BJT (2N2222), positioned very close to
each other. Basically, the current mirror replicates the FSR sensor
(RFSR) current in the gain resistor (RG), thus providing a linear

load-to-voltage response and allowing the output voltage to swing
through the full voltage supply range. The sensibility of each
muscle sensor can be varied by changing the RG value. Thanks
to its low energy consumption, this conditioning circuit can be
directly supplied by microcontrollers or ADC boards (e.g., 3.3 or
5 V). VCC was set to 5 V, and the gain resistors RG1, RG2, and RG3
were set to 850, 790, and 960 �, respectively, to equalize the gains
of the three channels.
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FIGURE 4 | Performed hand gestures: (A) rest; (B) wrist flexion; (C) wrist
extension; (D) wrist adduction; (E) wrist abduction; (F) wrist rotation
(supination); (G) fingers abduction; (H) clenched fist.

Static calibrations were performed for each FSR sensor to
evaluate the relationship between the muscular force exerted
on the FSR, reported in kilograms, and the voltage output
VOUT (Figure 3; Esposito et al., 2018). Each sensor was placed
on a precision electronic scale, then different weights were
applied on active sensor area perpendicularly to the dome, and
the corresponding output voltages were recorded. The output
signals were acquired at 1 kHz sampling frequency with 12-
bit precision by means of National Instruments NI USB-6008
acquisition board.

Machine Learning Algorithms Applied to
Hand Gesture Classification
The experimental tests involved 10 subjects (eight men and two
women aged from 25 to 64 years), who provided their informed
and written consent. Each participant comfortably sat on an
adjustable height chair, leaning against its fixed seatback, in front
of a desk with a computer screen. He was asked to place his elbow
on the desk, forming an angle of about 45◦ between the forearm
and the desktop. The armband was appropriately positioned on
the forearm, and the pressure at rest was recorded by the sensors
and resulted 100 g/cm2 on average. The subjects were asked to

perform 10 repetitions of each hand gesture class (Figure 4)
in the following order: rest; wrist flexion; wrist extension; wrist
adduction; wrist abduction; wrist rotation (supination); finger
abduction; clenched fist; holding the final hand posture for a
couple of seconds; and resting for a few seconds before the next
movement. After the 10 repetitions of each hand gesture class, the
participant was allowed to rest for about a minute. Simultaneous
recordings from the three FSR sensors (VOUT 1−2−3) were
collected via the NI USB-6008 board at 1 kHz sampling frequency
with 12-bit precision.

The raw signals were firstly pre-processed, by subtracting the
minimum signal values recorded at rest (FSR offsets due to the
armband fastening pressure) and normalizing to the absolute
maximum value (Figure 5). In order to avoid manual selection
of each hand gesture, pre-processed data were automatically
segmented to extract the time intervals corresponding to the
final hand postures. Segmentation was achieved by selecting the
FSR signal with maximum variation (peak-to-peak amplitude)
and applying a heuristically chosen threshold set at 40% of
this value, which guaranteed appropriate segmentation of all
gestures. Means and standard deviations (SDs) of the three
FSR signals were computed for each segment. Then, for each
gesture instance, the three means and the three SDs computed
in the corresponding segment were considered as features. In
detail, the features extracted from all the gestures instances
in a single trial of a subject were assembled in a database
consisting of an 80 × 7 matrix (10 repetitions for each of the
eight hand gestures); each row corresponded to a single gesture
instance and was composed by the following seven elements:
(FSR1_mean, FSR2_mean, FSR3_mean, FSR1_SD, FSR2_SD,
FSR3_SD, and GESTURE_LABEL).

Then, different machine learning algorithms
(linear/polynomial/radial basis function-support vector
machines; linear discriminant analysis; quadratic discriminant
analysis; random forest; K-nearest neighbors, and neural
networks) were used for model training and data classification,
by means of “Weka” software (Frank et al., 2016). The conceptual
scheme of the entire process of hand gestures classification is
depicted in Figure 5.

Classification performances were assessed by applying the
10-fold and leave-one-out cross validations on each of the 10

FIGURE 5 | Schematic illustration of the hand gesture recognition system.
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FIGURE 6 | Real-time HMI: (A) block diagram of the calibration phase; (B) block diagram of the gaming session.

FIGURE 7 | Examples of raw signals (subject #3) recorded by the three FSRs for each performed gesture: (A) rest; (B) wrist flexion, (C) wrist extension, (D) wrist
adduction, (E) wrist abduction, (F) wrist rotation (supination); (G) fingers abduction; (H) clenched fist. Signal amplitudes are expressed in kilograms and different
force scales were used.

subjects’ databases. In 10-fold cross-validation, the dataset is
randomly divided into 10 subsets of equal size, and then each
subset is tested using the classifier trained on the remaining
nine subsets. Then, the obtained 10 classification accuracies
were averaged to provide an overall classification accuracy.
Instead, leave-one-out cross-validation is simply n-fold cross-
validation, where n is the number of instances in the dataset.
Each instance, in turn, is left out, and the learning method

is trained on all the remaining instances. Finally, all the
n classification accuracies were averaged to yield an overall
classification accuracy (Witten et al., 2016).

Furthermore, the classification performances of the different
machine learning algorithms were also tested on a combined
database, obtained by joining all subjects’ databases.

Finally, the possibility to classify gestures with less than three
sensors was tested by considering features from different sensors
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FIGURE 8 | Recording of 10 consecutive clenched fist movements from FSR3 (subject #3): FSR3 raw signal with the superimposed threshold (red line).

FIGURE 9 | Means, standard deviations, and medians related to the
segmented FSR3 signals of 10 clenched fist movements showed in Figure 8.

pairs (FSR1-FSR2, FSR1-FSR3, and FSR2-FSR3) and even from a
single sensor (FSR1, FSR2, and FSR3). In the case of sensors pairs,
each instance is characterized by four features (two means and
two SDs), while for a single sensor, the features reduced to two.

Reproducibility Test
A reproducibility test was also performed to assess the possibility
to use a model trained in a previous trial to classify gestures
performed in a subsequent trial. The data acquired by the 10
subjects (10 repetitions for each of the 8 gestures, as described
in the section “Machine Learning Algorithms Applied to Hand
Gesture Classification”) were used to construct the “linear SVM”
prevision model for each subject. Then, in a subsequent trial,
the same subjects wore again the device and performed a
randomized gestures sequence guided by a video. The video

showed a sequence of icons representing the gestures to be
performed (50 randomly chosen gestures separated by the rest
condition). For each subject, the data collected in this last trial
were classified using the model obtained from the previous trial.
The entire procedure for the reproducibility test was repeated
using an LDA classifier.

Real-Time Implementation of Hand
Gesture Recognition
A linear SVM classifier was implemented on an Arduino
UNO board3 (D’Ausilio, 2012; Arduino, 2019), equipped with
an ATmega328 (Atmel) microcontroller, to provide real-time
gesture recognition. The three outputs of the FSR sensors
conditioning circuit were directly connected to the analog inputs
of the board. In addition, custom graphical user interfaces (GUI)
were designed by means of “Processing” software4 (Processing,
2019) to facilitate interactive armband calibration and to allow
real-time user interaction with a computer. The real-time
application involved the steps described below. The subject was
asked to wear the armband and to perform the same sequence of
gestures described in the section “Machine Learning Algorithms
Applied to Hand Gesture Classification,” for device calibration.
Data were sent to the PC and used to train a linear SVM classifier
by means of Weka software; the trained classifier parameters
were sent to the Arduino board, and the calibration phase
was completed (Figure 6A). The videogame started on the PC
screen and the Arduino board performed real-time classification
of the current gesture: extracting gesture features (mean and

3https://store.arduino.cc/arduino-uno-rev3
4https://processing.org
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FIGURE 10 | Mean values computed for each of the 10 repetitions of each gesture (coded with different colors). FSR1, FSR2, FSR3 correspond to x, y, z axes,
respectively. For each gesture, the centroid is depicted as a black asterisk and the standard deviations in the three directions as continuous black lines.

SD) every 100 ms, making a classification and sending this
information (coded in 1 byte) to the PC at a 10 Hz rate, via
USB communication (Figure 6B). The subject started to play,
and the Arduino board output was used to replace the keyboard
and mouse controls. The subject never removed the armband
between these steps. For each gaming session, the gestures
correctly recognized in real-time were annotated and then their
percentages were computed. Each user was also asked to evaluate
the comfort and effectiveness of the device on a 0-to-10 scale.
The implementation of a real-time LDA classifier was further
tested, repeating the same procedure described for the linear
SVM (Hong et al., 2018).

Moreover, in order to verify a viable real-time classification,
the mean and standard deviation parameters were computed
using shorter FSR signal tracts than the segmented ones (the

section “Machine Learning Algorithms Applied to Hand Gesture
Classification”). However, due to the stationarity properties of the
FSR signal during a particular gesture, these concise statistical
parameters do not differ from those computed on larger time
windows and used to train the classifier.

RESULTS

Signals Pre-processing and Hand
Gestures Classification
Figure 7 shows an example of the FSRs raw signals for each
performed hand gesture (subject #3). Different intensity force
scales were used to better appreciate the signals shapes.
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TABLE 1 | Classification accuracies (in percentage) on 10 different subjects, using different machine learning algorithms [linear SVM (L-SVM), polynomial SVM (P-SVM),
radial basis function SVM (RBF-SVM), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), random forest (RF), K-nearest neighbors (K-NN), and
neural networks (NN)] and different cross-validation methods [10-fold (CV1) and leave-one-out (CV2)].

L-SVM P-SVM RBF-SVM LDA QDA RF KNN NN

CV1 CV2 CV1 CV2 CV1 CV2 CV1 CV2 CV1 CV2 CV1 CV2 CV1 CV2 CV1 CV2

S1 95 95 87.5 81.25 93.25 91.25 97.5 97.5 97.5 97.5 96.25 96.25 91.25 91.25 90 92.5

S2 92.5 87.5 73.75 76.25 90 88.75 95 96.25 96.25 96.25 89 88.75 88.50 88.75 83.75 86.25

S3 98.75 98.75 82.5 78.75 97.5 96.25 97.5 96.25 100 100 97.5 97.5 95 93.75 97 96.25

S4 96.25 96.25 80 83.75 96.25 96.25 96.25 96.25 98.75 98.75 97.5 97.5 100 100 100 100

S5 90 88.75 75 73.75 90 97.5 93.75 92.5 97.5 97.5 93.5 93.75 91 90 91.5 90

S6 100 100 85 86.25 100 100 100 100 98.75 98.75 97.5 97.5 98.75 98.75 98.75 98.75

S7 97.5 97.5 97.5 93.75 97.5 97.5 100 100 98.75 98.75 97.5 95 100 100 98.75 97.5

S8 97.5 96.25 92.5 92.5 97.5 96.25 98.75 98.75 98.75 98.75 100 100 97.5 97.5 98.75 98.75

S9 96.25 96.25 83.75 86.25 97.5 96.25 96.25 96.25 98.75 98.75 98.75 98.75 98.75 98.75 100 100

S10 96.25 95 75 86.25 96.25 96.25 97.5 96.25 93.75 93.75 93.75 93.75 98.75 98.75 97.5 97.5

FIGURE 11 | Means and standard deviations of the accuracies achieved across the 10 participants, by means of the different machine learning algorithms and for
each tested cross-validation method (Left, 10-fold and Right, leave-one-out).

TABLE 2 | Means and standard deviations of classification accuracies (across all
participants) by using linear SVM and LDA algorithms for all sensors combinations.

Selected sensor/s Linear SVM mean
(SD) accuracy (%)

LDA mean (SD)
accuracy (%)

FSR1 80.25 (9.89) 80.62 (8.00)

FSR2 76 (9.12) 82.37 (10.38)

FSR3 73.88 (13.25) 82.05 (8.58)

FSR1 and FSR2 91.75 (8.70) 92.27 (6.96)

FSR1 and FSR3 92.25 (5.26) 91.62 (6.18)

FSR2 and FSR3 90.38 (5.68) 92.87 (4.41)

FSR1 and FSR2 and FSR3 96 (2.93) 97.25 (2.02)

An example of raw signal segmentation is showed in
Figure 8. The segmentation function was achieved by applying a
threshold set at 40% of the FSR3 maximum signal variation. The
segmentation allowed us to extract only the samples associated
with the fully reached gesture while discarding the initial and
final transients.

Moreover, analyzing the values of the segmented signals for
each clenched fist movement in Figure 8, it was found that the
distributions of the occurrences do not seem Gaussian. These
probability distributions showed up also from the segmented
signals related to the other gestures. The median, as an
alternative to the mean, would be another possible feature. As

TABLE 3 | Classification accuracies reached on the combined database by using
linear SVM and LDA for all sensor combinations.

Selected sensor/s Linear SVM accuracy (%) LDA accuracy (%)

FSR1 41.5 32.62

FSR2 38 28.5

FSR3 37.1 33.87

FSR1 and FSR2 49.6 44

FSR1 and FSR3 49.6 37.37

FSR2 and FSR3 51.9 41.12

FSR1 and FSR2 and FSR3 58.5 44.50

an example, Figure 9 shows the means, the standard deviations,
and the medians referred to the segmented signals depicted in
Figure 8. In this case, the percentage variation between the
mean and the median was <2% for each repetition. Comparable
percentages were also found in the segmented signals related to
the other gestures. Hence, there is not practical convenience in
using medians instead of means because it would increase the
computational burden (critical for real-time applications).

As an example, Figure 10 shows the means corresponding
to the 10 repetitions of each gesture (subject #3) with different
colors (see legend of Figure 10) in a three-dimensional space (x, y,
and z axes correspond to FSR1, FSR2, and FSR3, respectively). In
addition, data were enriched by reporting centroids and standard
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TABLE 4 | Linear SVM classification accuracies (in percentage) on 10 different
subjects in recognizing eight hand gestures (classes).

Gesture (class) S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Rest 100 100 100 100 100 100 100 100 100 100

Wrist flexion 90 100 100 100 100 100 100 100 100 100

Wrist extension 100 90 100 100 90 100 100 100 100 90

Wrist adduction 100 90 100 100 100 100 90 90 90 80

Wrist abduction 80 70 100 80 60 100 100 90 100 100

Wrist rotation 90 100 90 100 80 100 90 100 100 100

Fingers abduction 100 90 100 90 90 100 100 100 80 100

Clenched fist 100 100 100 100 100 100 100 100 100 100

FIGURE 12 | Confusion matrix (across all participants) presenting the linear
SVM classification accuracies (in percentages): rows correspond to true
performed hand gestures and columns to predicted hand gestures.

deviations (computed in the three directions). Gestures appeared
to be confined in specific regions, which did not overlap with each
other. It is interesting to note that the rest condition was located
around a point that represented the grip force of the armband
(here about 0.1 kg).

TABLE 5 | LDA classification accuracies (in percentage) on 10 different subjects in
recognizing eight hand gestures (classes).

Gesture (class) S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Rest 100 100 100 100 100 100 100 100 100 100

Wrist flexion 100 100 100 100 90 100 100 100 100 90

Wrist extension 100 90 100 100 90 100 100 100 100 100

Wrist adduction 100 100 90 80 90 100 100 90 80 90

Wrist abduction 90 70 100 90 90 100 100 100 100 100

Wrist rotation 90 100 90 100 90 100 100 100 100 100

Fingers abduction 100 100 100 100 100 100 100 100 90 100

Clenched fist 100 100 100 100 100 100 100 100 100 100

FIGURE 13 | Confusion matrix (across all participants) presenting the LDA
classification accuracies (in percentages): rows correspond to true performed
hand gestures and columns to predicted hand gestures.

Considering all three FSRs, the classification accuracy
achieved for each subject, by means of the different algorithms
and cross-validation methods, are shown in Table 1.

Figure 11 shows the means and the standard deviations
of the accuracies achieved across all participants, using the
aforementioned machine learning algorithms and the two cross-
validation methods.

Table 1 shows that linear SVM and LDA algorithms
allow to obtain higher classification accuracies with lower
computational complexities, compared to all the other evaluated
machine learning algorithms. Therefore, more extended
analysis was focused on these classifiers, considering the
10-fold cross-validation.

Table 2 summarizes the classification performances achieved
by considering all sensors combinations, reporting means
and standard deviations of the related accuracies (across all
participants). Using a single sensor, the mean classification
accuracy was about 77% for linear SVM, while about 82% for
LDA. Moreover, using two sensors the accuracy increased to
about 91% for linear SVM, while about 92% for LDA.

Table 3 outlines the classification performances obtained for
the combined database (all subjects) by using linear SVM and
LDA for all sensors combinations.

Table 4 shows the classification accuracies reached with linear
SVM, for each subject and hand gesture class. The average
accuracy across all participants resulted 96% (SD: 2.93%), and
the confusion matrix (right and wrong average recognition
percentages across all 10 subjects) is shown in Figure 12.

Table 5 shows the classification accuracies reached with
LDA, for each subject and hand gesture class. The average
accuracy across all participants resulted 97.25% (SD: 2.02%),
and the confusion matrix (right and wrong average recognition
percentages across all 10 subjects) is shown in Figure 13.

Frontiers in Neurorobotics | www.frontiersin.org 9 January 2020 | Volume 13 | Article 114

https://www.frontiersin.org/journals/neurorobotics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neurorobotics#articles


fnbot-13-00114 January 8, 2020 Time: 18:45 # 10

Esposito et al. Armband for Hand Gesture Recognition

Reproducibility Test
During the reproducibility test, the mean classification
accuracy (across all users) was 78.8% with linear SVM, while
60.25% with LDA.

Graphical Interfaces for Practical HMI
Applications
The custom graphical interface that displays icons corresponding
to the recognized hand gestures was used both for calibration
purposes and for quick assessment of real-time classifier
performances (Figure 6). The real-time gesture recognition
system was used to play various games (e.g., “Pong” videogame5)
by replacing the mouse and keyboards commands with those
provided by the Arduino board (Pong-Game, 2019). The average
percentage (across all users) of correctly recognized gestures
resulted 93% with linear SVM, while 90% with LDA. Subjects
reported that this HMI was comfortable to wear and intuitive to
use, not requiring long training to achieve good results. The mean
“comfort score” was 8.3/10. The “effectiveness score” was 8.1/10
for linear SVM, and 7.8/10 for LDA.

DISCUSSION AND CONCLUSION

A novel piezoresistive array armband for hand gesture
recognition was presented. It was based on a reduced number
of muscle contraction sensors, appropriately positioned on
specific forearm muscles. Nevertheless, it allowed discriminating
eight classes of hand gestures with remarkable accuracy,
regardless of the specific classifier (Table 1). Classifiers based
on linear SVM and LDA have low computational complexities
and can be easily implemented in hardware. Therefore, more
extended analysis was focused on these classifiers. The average
classification accuracy across all subjects, resulted 96% for linear
SVM and 97.25% for LDA. These performances were achieved
by separately considering the databases associated with each
user and averaging the accuracies. Instead, considering the
combined database (all subjects) the linear SVM classification
achieved a maximum accuracy of 58.5%, while LDA scored
44.5%. A significant classification accuracy was also achieved
by considering combinations of only two sensors: the mean
accuracy resulted 91.46% for linear SVM and 92.25% for LDA.
As expected, the use of a single sensor led to a significant
reduction in mean classification accuracy (about 77% for linear
SVM and 82% for LDA). With regard to the reproducibility
test (described in the section “Reproducibility Test”), the
mean classification accuracy (across all subjects) was 78.8%
for linear SVM and 60.25% for LDA. This reduction in
accuracy suggests that each time the device is used, a new
calibration (i.e., classifier training) is advisable for optimal
performances. It could be interesting to extend this study to a
much larger cohort of subjects, in order to obtain more reliable
classification results, and also to investigate the possibility
to discover common muscle activation strategies, to identify
pathological behaviors, etc.

5https://it.wikipedia.org/wiki/pong

The proposed armband is extremely lightweight, simple to
wear, and easily adjustable for any user. It is comfortable
and unobtrusive, as proved by the low grip force values
recorded at rest, and it allows to simultaneously monitor
the contractions of multiple specific forearm muscles. It
is also scalable in the number of sensors, thus giving
the opportunity to avoid their precise positioning onto
specific muscles (e.g., full sensors covered armband could
be used). The extreme simplicity of FSR sensors and their
conditioning circuits, along with the straightforward usability
of the output signals (no additional processing required), allow
to easily implement this system on low-performing, commercial
platforms, also with wireless capabilities (Gargiulo et al., 2010;
Bifulco et al., 2011).

The proposed HMI could be applied in “exergaming”
applications: graphical interfaces can provide patients
with real-time feedback on the quality of the performed
gestures, inducing self-corrections of their movements.
Moreover, the possibility to monitor the contractions
of specific muscles would provide additional clinical
information about patients’ progress. Thus, the exergaming
could be used in clinical practice to make neuromotor
rehabilitation processes more stimulating and enjoyable
(Ordnung et al., 2017).

The encouraging results obtained with few sensors suggest
the possibility to adopt this HMI also in hand prosthesis control
(Polisiero et al., 2013; Bifulco et al., 2017; Sreenivasan et al.,
2018), thanks to the similarity of the FSR-based sensors outputs
and the EMG-LE. Indeed, the small size and flatness of the
sensors make it possible to embed them inside the prosthesis
socket. More generally, the muscle contraction sensors could be
potentially adapted to monitor other muscles (e.g., muscles of
arms, legs, shoulders, etc.), allowing them to develop a wide range
of EMG-based HMI applications.
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