73 research outputs found

    Demography of obscured and unobscured AGN: prospects for a Wide Field X-ray Telescope

    Full text link
    We discuss some of the main open issues in the evolution of Active Galactic Nuclei which can be solved by the sensitive, wide area surveys to be performed by the proposed Wide Field X-ray Telescope mission.Comment: Proceedings of "The Wide Field X-ray Telescope Workshop", held in Bologna, Italy, Nov. 25-26 2009. To appear in Memorie della Societa' Astronomica Italiana 2010 (arXiv:1010.5889

    Mining the SDSS archive. I. Photometric redshifts in the nearby universe

    Get PDF
    We present a supervised neural network approach to the determination of photometric redshifts. The method was tuned to match the characteristics of the Sloan Digital Sky Survey and it exploits the spectroscopic redshifts provided by this unique survey. In order to train, validate and test the networks we used two galaxy samples drawn from the SDSS spectroscopic dataset: the general galaxy sample (GG) and the luminous red galaxies subsample (LRG). The method consists of a two steps approach. In the first step, objects are classified in nearby (z<0.25) and distant (0.25<z<0.50). In the second step two different networks are separately trained on objects belonging to the two redshift ranges. Using a standard MLP operated in a Bayesian framework, the optimal architectures were found to require 1 hidden layer of 24 (24) and 24 (25) neurons for the GG (LRG) sample. The presence of systematic deviations was then corrected by interpolating the resulting redshifts. The final results on the GG dataset give a robust sigma_z = 0.0208 over the redshift range [0.01, 0.48] and sigma_z = 0.0197 and sigma_z = 0.0238 for the nearby and distant samples respectively. For the LRG subsample we find a robust sigma_z = 0.0164 over the whole range, and sigma_z = 0.0160, sigma_z = 0.0183 for the nearby and distant samples respectively. After training, the networks have been applied to all objects in the SDSS Table GALAXY matching the same selection criteria adopted to build the base of knowledge, and photometric redshifts for ca. 30 million galaxies having z<0.5 were derived. A catalogue containing photometric redshifts for the LRG subsample was also produced.Comment: 45 pages, 14 figures, accepted for publication is the Astrophysical Journa

    High-Redshift Extremely Red Objects in the Hubble Space Telescope Ultra Deep Field Revealed by the GOODS Infrared Array Camera Observations

    Get PDF
    Using early data from the Infrared Array Camera (IRAC) on the Spitzer Space Telescope, taken for the Great Observatories Origins Deep Survey (GOODS), we identify and study objects that are well detected at 3.6 m but are very faint (and in some cases, invisible) in the Hubble Ultra Deep Field (HUDF) ACS and NICMOS images andinverydeepVLT Ks-band imaging. We select a sample of 17 objects with f(3:6 m)=f(z850) > 20. The analysis of their spectral energy distributions (SEDs) from 0.4 to 8.0 m shows that the majority of these objects cannot be satisfactorily explained without a well-evolved stellar population.We find thatmost of themcan be well fitted by a simple two-component model, where the primary component represents a massive, old population that dominates the strong IR emission, while the secondary component represents a low-amplitude, on-going star formation process that accounts for the weak optical fluxes. Their estimated photometric redshifts (zp) range from 1.6 to 2.9 with the median at zp ÂŒ 2:4. For the simple star formation histories considered here, their corresponding stellarmasses range from (0.1–1.6) ; 1011 M for a Chabrier initialmass function ( IMF). Their median rest-frame Ks-band absolute magnitude is 22.9 maginthe AB system,or 1:5 ; L(K) for present-day elliptical galaxies. In the scenario of pure luminosity evolution, such objects may be direct progenitors for at least 14%–51% of the local population of early type galaxies. Because of the small cosmic volume of the HUDF, however, this simple estimate could be affected by other effects, such as cosmic variance and the strong clustering of massive galaxies. A full analysis of the entire GOODS area is now under way to assess such effects

    Unveiling the Nature of Giant Ellipticals and their Stellar Halos with the VST

    Get PDF
    Observations of diffuse starlight in the outskirts of galaxies provide fundamental constraints on the cosmological context of galaxy assembly in the Lambda Cold Dark Matter model, which predicts that galaxies grow through a combination of in-situ star formation and accretion of stars from other galaxies. Accreted stars are expected to dominate in the outer parts of galaxies. Since dynamical timescales are longer in these regions, substructures related to accretion, such as streams and shells, can persist over many Gyr. In this work we use extremely deep g- and i-band images of six massive early- type galaxies (ETGs) from the VEGAS survey to constrain the properties of their accreted stellar components. The wide field of view of OmegaCAM on the VLT Survey Telescope (VST) also allows us to investigate the properties of small stellar systems (such as globular clusters, ultra-compact dwarfs and satellite galaxies) in the halos of our galaxies. By fitting light profiles, and comparing the results to simulations of elliptical galaxy assembly, we have identified signatures of a transition between relaxed and unrelaxed accreted components and can constrain the balance between in-situ and accreted stars

    Galaxy populations in the Hydra i cluster from the VEGAS survey:I. Optical properties of a large sample of dwarf galaxies

    Get PDF
    At ~50 Mpc, the Hydra I cluster of galaxies is among the closest cluster in the z=0 Universe, and an ideal environment to study dwarf galaxy properties in a cluster environment. We exploit deep imaging data of the Hydra I cluster to construct a new photometric catalog of dwarf galaxies in the cluster core, which is then used to derive properties of the Hydra I cluster dwarf galaxies population as well as to compare with other clusters. Moreover, we investigate the dependency of dwarf galaxy properties on their surrounding environment. The new Hydra I dwarf catalog contains 317 galaxies with luminosity between -18.5<MrM_r<-11.5 mag, a semi-major axis larger than ~200 pc (a=0.84 arcsec), of which 202 are new detections, previously unknown dwarf galaxies in the Hydra I central region. We estimate that our detection efficiency reaches 50% at the limiting magnitude MrM_r=-11.5 mag, and at the mean effective surface brightness Ό‟e,r\overline{\mu}_{e,r}=26.5 mag/arcsec2arcsec^2. We present the standard scaling relations for dwarf galaxies and compare them with other nearby clusters. We find that there are no observational differences for dwarfs scaling relations in clusters of different sizes. We study the spatial distribution of galaxies, finding evidence for the presence of substructures within half the virial radius. We also find that mid- and high-luminosity dwarfs (MrM_r<-14.5 mag) become on average redder toward the cluster center, and that they have a mild increase in ReR_e with increasing clustercentric distance, similar to what is observed for the Fornax cluster. No clear clustercentric trends are reported with surface brightness and S\'ersic index. Considering galaxies in the same magnitude-bins, we find that for high and mid-luminosity dwarfs (MrM_r<-13.5 mag) the g-r color is redder for the brighter surface brightness and higher S\'ersic n index objects.Comment: Accepted for publication in A&A. 25 pages, 21 figure

    X-Ray Spectral Analyses of AGNs from the 7Ms Chandra Deep Field-South Survey: The Distribution, Variability, and Evolutions of AGN Obscuration

    Get PDF
    We present a detailed spectral analysis of the brightest active galactic nuclei (AGNs) identified in the 7Ms Chandra Deep Field-South (CDF-S) survey over a time span of 16 years. Using a model of an intrinsically absorbed power-law plus reflection, with possible soft excess and narrow Fe Kα line, we perform a systematic X-ray spectral analysis, both on the total 7Ms exposure and in four different periods with lengths of 2–21 months. With this approach, we not only present the power-law slopes, column densities NH{N}_{{\rm{H}}}, observed fluxes, and absorption-corrected 2–10 keV luminosities L X for our sample of AGNs, but also identify significant spectral variabilities among them on timescales of years. We find that the NH{N}_{{\rm{H}}} variabilities can be ascribed to two different types of mechanisms, either flux-driven or flux-independent. We also find that the correlation between the narrow Fe line EW and NH{N}_{{\rm{H}}} can be well explained by the continuum suppression with increasing NH{N}_{{\rm{H}}}. Accounting for the sample incompleteness and bias, we measure the intrinsic distribution of NH{N}_{{\rm{H}}} for the CDF-S AGN population and present reselected subsamples that are complete with respect to NH{N}_{{\rm{H}}}. The NH{N}_{{\rm{H}}}-complete subsamples enable us to decouple the dependences of NH{N}_{{\rm{H}}} on L X and on redshift. Combining our data with those from C-COSMOS, we confirm the anticorrelation between the average NH{N}_{{\rm{H}}} and L X of AGN, and find a significant increase of the AGN-obscured fraction with redshift at any luminosity. The obscured fraction can be described as fobscured≈0.42 (1+z)0.60{f}_{\mathrm{obscured}}\approx 0.42\ {(1+z)}^{0.60}

    Looking into the faintEst WIth MUSE (LEWIS): on the nature of ultra-diffuse galaxies in the Hydra-I cluster.I. Project description and preliminary results

    Get PDF
    Looking into the faintEst WIth MUSE (LEWIS) is an ESO large observing programme aimed at obtaining the first homogeneous integral-field spectroscopic survey of 30 extremely low-surface brightness (LSB) galaxies in the Hydra I cluster of galaxies, with MUSE at ESO-VLT. The majority of LSB galaxies in the sample (22 in total) are ultra-diffuse galaxies (UDGs). The distribution of systemic velocities Vsys ranges between 2317 km/s and 5198 km/s and is centred on the mean velocity of Hydra I (Vsys = 3683 ±\pm 46 km/s). Considering the mean velocity and the velocity dispersion of the cluster, 17 out of 20 targets are confirmed cluster members. To assess the quality of the data and demonstrate the feasibility of the science goals, we report the preliminary results obtained for one of the sample galaxies, UDG11. For this target, we derived the stellar kinematics, including the 2-dimensional maps of line-of-sight velocity and velocity dispersion, constrained age and metallicity, and studied the globular cluster (GC) population hosted by the UDG. Results are compared with the available measurements for UDGs and dwarf galaxies in literature. By fitting the stacked spectrum inside one effective radius, we find that UDG11 has a velocity dispersion σ=20±8\sigma = 20 \pm 8 km/s, it is old (10±110\pm1 Gyr), metal-poor ([M/H]=-1.17±\pm0.11 dex) and has a total dynamical mass-to-light ratio M/LV∌14/L_V\sim 14, comparable to those observed for classical dwarf galaxies. The spatially resolved stellar kinematics maps suggest that UDG11 does not show a significant velocity gradient along either major or minor photometric axes. We find two GCs kinematically associated with UDG11. The estimated total number of GCs in UDG11, corrected for the spectroscopic completeness limit, is NGC=5.9−1.8+2.2N_{GC}= 5.9^{+2.2}_ {-1.8}, which corresponds to a GC specific frequency of SN=8.4−2.7+3.2S_N = 8.4^{+3.2}_{-2.7}.Comment: Accepted for publication in Astronomy and Astrophysic

    VizieR Online Data Catalog: The Fornax Deep Survey with the VST. IX. (Cantiello+, 2020)

    Get PDF
    We derive ugri photometry of ~1.7 million sources over the ~21 square degree area of the Fornax Deep Survey (FDS) centered on the bright galaxy NGC1399 (fds.dat). For a wider area, of ~27 square degrees extending in the direction of NGC1316, we provide gri photometry for ~3.1 million sources (fdsex.dat). The identification of compact sources, globular clusters (GC) and ultra compact dwarf galaxies (UCD), is obtained from a combination of photometric and morphometric selection criteria taking as reference the properties of confirmed GCs and UCDs in the literature. The master tables of GC and UCD are also provided. (4 data files)

    The XMM-SERVS Survey: XMM-Newton Point-source Catalogs for the W-CDF-S and ELAIS-S1 Fields

    Get PDF
    We present the X-ray point-source catalogs in two of the XMM-Spitzer Extragalactic Representative Volume Survey (XMM-SERVS) fields, W-CDF-S (4.6 deg2) and ELAIS-S1 (3.2 deg2), aiming to fill the gap between deep pencil-beam X-ray surveys and shallow X-ray surveys over large areas. The W-CDF-S and ELAIS-S1 regions were targeted with 2.3 and 1.0 Ms of XMM-Newton observations, respectively; 1.8 and 0.9 Ms exposures remain after flare filtering. The survey in W-CDF-S has a flux limit of 1.0 × 10−14 erg cm−2 s−1 over 90% of its area in the 0.5–10 keV band; 4053 sources are detected in total. The survey in ELAIS-S1 has a flux limit of 1.3 × 10−14 erg cm−2 s−1 over 90% of its area in the 0.5–10 keV band; 2630 sources are detected in total. Reliable optical-to-IR multiwavelength counterpart candidates are identified for ≈89% of the sources in W-CDF-S and ≈87% of the sources in ELAIS-S1. A total of 3129 sources in W-CDF-S and 1957 sources in ELAIS-S1 are classified as active galactic nuclei (AGNs). We also provide photometric redshifts for X-ray sources; ≈84% of the 3319/2001 sources in W-CDF-S/ELAIS-S1 with optical-to-near-IR forced photometry available have either spectroscopic redshifts or high-quality photometric redshifts. The completion of the XMM-Newton observations in the W-CDF-S and ELAIS-S1 fields marks the end of the XMM-SERVS survey data gathering. The ≈12,000 pointlike X-ray sources detected in the whole ≈13 deg2 XMM-SERVS survey will benefit future large-sample AGN studies

    VizieR Online Data Catalog: Chandra Deep Field-South survey: 7Ms sources (Luo+, 2017)

    Get PDF
    The 7Ms CDF-S contains 102 Chandra ACIS-I observations, with a total cleaned exposure time of 6.727Ms, taken in four separate epochs of time. The basic information on these observations is listed in Table 1. There were 48 recent observations acquired between 2014 June 9 and 2016 March 24, which constitute the last 3Ms of exposure of the 7Ms CDF-S. The first 1Ms of exposure consists of 11 observations taken between 1999 and 2000 (Giacconi+ 2002, J/ApJS/139/369; Rosati+ 2002ApJ...566..667R; Alexander+ 2003, J/AJ/126/539), the next 1Ms of exposure consists of 12 observations taken in 2007 (Luo+ 2008, J/ApJS/179/19), and another 2Ms of exposure includes 31 observations in 2010 (Xue+ 2011, J/ApJS/195/10). The total area covered by the 7Ms CDF-S is 484.2arcmin2. (3 data files)
    • 

    corecore