180 research outputs found

    Vulnerability analysis aimed at the safeguard of the Ererouyk basilica in Armenia

    Get PDF
    The basilica of Ererouyk have recently attracted the attention of the Armenian government, which has decided to promote its preservation by commissioning the National University of Architecture and Construction of Armenia to coordinate a group of Italian and Armenian experts. Built in the sixth century, the three-nave basilica of Ererouyk is unique in Armenia for its size, importance, and typology. For this reason, it has interested many scholars since the late 19th century. In this work, the path followed to know in an accurate way the structural response and to evaluate the vulnerability will be described. The first phase of the study consisted in an in-depth analysis of the damages and restoration interventions that the basilica has undergone during its history. Subsequently, the identification of the material properties both using results of tests performed on the basilica material and referring to literature data was performed. Then the seismic input was defined, following Armenian standards. Aware of the huge uncertainties inherent in the behavior of a sack masonry building that has undergone changes over the centuries, it was decided to perform the structural analysis using methods/models of increasing complexity, from linear kinematic approach to nonlinear time history analyses using three-dimensional finite element model with non-linear properties of the masonry. The systematization of all the information collected has allowed giving a complete and exhaustive picture of the vulnerability of the structure, highlighting the necessity to intervene for the improvement of its structural behavior towards seismic action

    Laboratory-scale investigation on the role of microalgae towards a sustainable treatment of real municipal wastewater

    Get PDF
    Abstract Engineered microalgal-bacteria consortia are an attractive solution towards a low-cost and sustainable wastewater treatment that does not rely on artificial mechanical aeration. In the research conducted for this study, a bench-scale photo-sequencing-batch reactor (PSBR) was operated without external aeration. A spontaneous consortium of microalgae and bacteria was developed in the PSBR at a concentration of 0.8–1.7 g TSS/L. The PSBR ensured removal efficiency of 85 ± 8% for chemical oxygen demand (COD) and 98 ± 2% for total Kjeldahl nitrogen (TKN). Nitrogen balance revealed that the main mechanisms for TKN removal was autotrophic nitrification, while N assimilation and denitrification accounted for 4% and 56%, respectively. The development of dense microalgae–bacteria bioflocs resulted in good settleability with average effluent concentration of 16 mgTSS/L. The ammonium removal rate was 2.9 mgN L−1 h−1, which corresponded to 2.4 mgN gTSS−1 h−1. Although this specific ammonium removal rate is similar to activated sludge, the volumetric rate is lower due to the limited total suspended solids (TSS) concentration (three times less than activated sludge). Therefore, the PSBR footprint appears less competitive than activated sludge. However, ammonium was completely removed without artificial aeration, resulting in a very cost-effective process. Only 50% of phosphorus was removed, suggesting that further research on P uptake is needed

    A fibre flexure-shear model for seismic analysis of RC-framed structures

    Get PDF
    Whilst currently existing modelling approaches of reinforced concrete behaviour allow a reasonably accurate prediction of flexural response, the determination of its shear counterpart needs further developments. There are various modelling strategies in literature able to predict the shear response and the shear-flexure coupling under monotonic loading conditions. However, very few are the reported models that have demonstrated successful results under cyclic loading, as in the seismic load case. These considerations lead to this research work focused on the development of a flexure-shear model for reinforced concrete beam-column elements. A reliable constitutive model for cracked reinforced concrete subjected to cyclic loading was implemented as bi-axial fibre constitutive model into a two-dimensional Timoshenko beam-column element. Aim of this research work is to arrive at the definition of a numerical model sufficiently accurate and, at the same time, computationally efficient, that will enable implementation within a Finite Element package for nonlinear dynamic analysis of existing non seismically designed RC structures that are prone to shear-induced damage and collapse.info:eu-repo/semantics/publishedVersio

    Declusterization of GABAA receptors affects the kinetic properties of GABAergic currents in cultured hippocampal neurons.

    Get PDF
    Speed and reliability of synaptic transmission are essential for information coding in neuronal networks and require the presence of clustered neurotransmitter receptors at the plasma membrane in precise apposition to presynaptic terminals. Receptor clusterization is the result of highly regulated processes involving functional and structural proteins. Among the structural elements, microtubules are known to play a crucial role in anchoring of gamma-aminobutyric acid, type A (GABA(A)) receptors. Here we show that microtubule depolymerization with nocodazole induces the declusterization of GABA(A) receptors and modifies the kinetic properties of GABAergic currents in cultured hippocampal neurons. In particular, this drug, applied either in the bath or via the patch pipette, induced the acceleration of the onset kinetics of miniature inhibitory postsynaptic currents (mIPSCs) without significantly affecting their frequency, thus suggesting a main postsynaptic site of action. After nocodazole treatment, current responses to ultrafast applications of GABA exhibited a faster rise time and an accelerated onset of desensitization. A quantitative analysis of GABA-evoked currents and model simulations suggest that declusterization affects the gating properties of GABA(A) receptors. In particular, a faster entry into the desensitized state of declustered GABA(A) receptors may account for the changes in the kinetic properties of mIPSCs after nocodazole treatment. Hence it appears that the clustered condition of GABA(A) receptors contributes in shaping GABAergic currents

    Composite material comprising pectin and calcium phosphate and method for its realisation

    Get PDF
    A method for obtaining a composite material including an aqueous solution of pectin and a suspension/solution of calcium phosphate mixed together, wherein said solution of pectin cross-links with a portion of the calcium obtained from the solution of calcium phosphate and wherein a portion of the calcium phosphate in suspension remains as inorganic phase and composite materials obtained by this method

    From micro- to nanostructured implantable device for local anesthetic delivery

    Get PDF
    Local anesthetics block the transmission of painful stimuli to the brain by acting on ion channels of nociceptor fibers, and find application in the management of acute and chronic pain. Despite the key role they play in modern medicine, their cardio and neurotoxicity (together with their short half-life) stress the need for developing implantable devices for tailored local drug release, with the aim of counterbalancing their side effects and prolonging their pharmacological activity. This review discusses the evolution of the physical forms of local anesthetic delivery systems during the past decades. Depending on the use of different biocompatible materials (degradable polyesters, thermosensitive hydrogels, and liposomes and hydrogels from natural polymers) and manufacturing processes, these systems can be classified as films or micro- or nanostructured devices. We analyze and summarize the production techniques according to this classification, focusing on their relative advantages and disadvantages. The most relevant trend reported in this work highlights the effort of moving from microstructured to nanostructured systems, with the aim of reaching a scale comparable to the biological environment. Improved intracellular penetration compared to microstructured systems, indeed, provides specific drug absorption into the targeted tissue and can lead to an enhancement of its bioavailability and retention time. Nanostructured systems are realized by the modification of existing manufacturing processes (interfacial deposition and nanoprecipitation for degradable polyester particles and high- or low-temperature homogenization for liposomes) or development of novel strategies (electrospun matrices and nanogels). The high surface-to-volume ratio that characterizes nanostructured devices often leads to a burst drug release. This drawback needs to be addressed to fully exploit the advantage of the interaction between the target tissues and the drug: possible strategies could involve specific binding between the drug and the material chosen for the device, and a multiscale approach to reach a tailored, prolonged drug release

    Tuning GABAergic Inhibition: Gephyrin Molecular Organization and Functions

    Get PDF
    To be highly reliable, synaptic transmission needs postsynaptic receptors (Rs) in precise apposition to the pre - synaptic release sites. At inhibitory synapses, the postsynaptic protein gephyrin self -assembles to form a scaffold that anchors glycine and GABA A Rs to the cytoskeleton, thus ensuring the accurate accumulation of postsynaptic receptors at the right place. This protein undergoes several post -translational modifications which control protein-protein interac- tion and downstream signaling pathways. In addition, through the constant exchange of scaffolding elements and recep- tors in and out of synapses, gephyrin dynamically regulates synaptic strength and plasticity.The aim of the present review is to highlight recent findings on the functional role of gephyrin at GABAergic inhibitory synapses. We will discuss different approaches used to interfere with gephyrin in order to unveil its function. In addition, we will focus on the impact of gephyrin structure and distribution at the nanoscale level on the functional properties of inhibitory synapses as well as the implications of this scaffold protein in synaptic plasticity processes. Finally, we will emphasize how gephyrin genetic mutations or alterations in protein expression levels are implicated in several neuropathological disorders, including aut- ism spectrum disorders, schizophrenia, temporal lobe epilepsy and Alzheimer's disease, all associated with severe def- icits of GABAergic signaling. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries. (c) 2019 The Authors. Published by Elsevier Ltd on behalf of IBRO. This is an open access article under the CC BY -NC -ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Immunological and Differentiation Properties of Amniotic Cells Are Retained After Immobilization in Pectin Gel

    Get PDF
    Mesenchymal stromal cells from the human amniotic membrane (i.e., human amniotic mesenchymal stromal cells [hAMSCs]) of term placenta are increasingly attracting attention for their applications in regenerative medicine. Osteochondral defects represent a major clinical problem with lifelong chronic pain and compromised quality of life. Great promise for osteochondral regeneration is held in hydrogel-based constructs that have a flexible composition and mimic the physiological structure of cartilage. Cell loading within a hydrogel represents an advantage for regenerative purposes, but the encapsulation steps can modify cell properties. As pectin gels have also been explored as cell vehicles on 3D scaffolds, the aim of this study was to explore the possibility to include hAMSCs in pectin gel. Immobilization of hAMSCs into pectin gels could expand their application in cell-based bioengineering strategies. hAMSCs were analyzed for their viability and recovery from the pectin gel and for their ability to differentiate toward the osteogenic lineage and to maintain their immunological characteristics. When treated with a purposely designed pectin/hydroxyapatite gel biocomposite, hAMSCs retained their ability to differentiate toward the osteogenic lineage, did not induce an immune response, and retained their ability to reduce T cell proliferation. Taken together, these results suggest that hAMSCs could be used in combination to pectin gels for the study of novel osteochondral regeneration strategies

    ED-B fibronectin expression is a marker of epithelial-mesenchymal transition in translational oncology

    Get PDF
    Fibronectin is a component of the extracellular matrix that links collagen fibers to integrins on the cell's surface. The splicing isoforms, containing the ED-B domain, are not expressed in adult tissues but only in tumor stroma or during embryonic development. Fibroblasts and endothelial cells express ED-B fibronectin during angiogenesis. Also cancer cells can synthetize ED-B fibronectin, but its function in tumor growth needs to be further elucidated. We evaluated the expression of ED-B fibronectin in prostate cancer cell lines: PC3 and DU145. Using TGF-β, we induced epithelial to mesenchymal transition in culture and observed an increase of ED-B fibronectin expression. Thereafter, we evaluated the expression of ED-B fibronectin in multipotent mesangiogenic progenitor cells, and in mesenchymal stromal cells. The expression of ED-B fibronectin was much higher in mesenchymal than prostate cancer cells even after the epithelial to mesenchymal transition. Epithelial to mesenchymal transition is a key step for tumor progression contributing to the metastatic spread. Therefore, circulating cancer cells could seed into the metastatic niche taking advantage from the ED-B fibronectin that secrete their own
    • …
    corecore