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SUMMARY 
 
Whilst currently existing modelling approaches of reinforced concrete behaviour allow a reasonably 
accurate prediction of flexural response, the determination of its shear counterpart needs further 
developments. There are various modelling strategies in literature able to predict the shear response and the 
shear-flexure coupling under monotonic loading conditions. However, very few are the reported models 
that have demonstrated successful results under cyclic loading, as in the seismic load case. These 
considerations lead to this research work focused on the development of a flexure-shear model for 
reinforced concrete beam-column elements.  A reliable constitutive model for cracked reinforced concrete 
subjected to cyclic loading was implemented as bi-axial fibre constitutive model into a two-dimensional 
Timoshenko beam-column element. Aim of this research work is to arrive at the definition of a numerical 
model sufficiently accurate and, at the same time, computationally efficient, that will enable 
implementation within a Finite Element package for nonlinear dynamic analysis of existing non seismically 
designed RC structures that are prone to shear-induced damage and collapse.  
 
KEY WORDS: fibre element, shear deformations, seismic analysis, reinforced concrete frames 
 

1. INTRODUCTION 

In past earthquakes, many reinforced concrete (RC) buildings and bridges failed 
catastrophically due to shear deficiencies of columns and piers. Current design codes 
have provisions to prevent brittle shear failure, as well as to recognise the influence of 
flexure ductility demand in shear resistance. However, the accurate simulation of 
behaviour of existing RC structures subjected to strong ground motion is still a 
challenging and open problem. In particular, the determination of shear strength and 
deformation response is still far from reaching a mature state of development.  

Most of the state-of-the-art on seismic design and assessment procedures proposed 
recently for common engineering practice requires either static or dynamic nonlinear 
analyses using frame elements where the nonlinearity is traditionally introduced with one 
of two main approaches: lumped-plasticity modelling, or distributed-inelasticity 
modelling (i.e., the so-called fibre beam-column elements).  

Several fibre beam-column elements were developed in the last twenty years with 
capability of reproducing coupled axial force and flexure effects [1, 2, 3]. The fibre 
approach fits perfectly within the Euler-Bernoulli beam theory and caters for the accurate 
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description of response of slender flexure-dominated members [e.g. 4] and full structures 
[e.g. 5]. However, the latter fails when the coupling between shear, axial and bending 
action becomes important as, for instance, in RC structures with non-slender elements 
subjected to seismic loading. Recent studies [6 - 16] have attempted to overcome this 
limitation by introducing into the fibre approach the Timoshenko beam theory, or even a 
generalised beam theory coupled with multi-axial constitutive laws for material. 
Researchers working in each of these areas generally have been successful in producing 
models that yield results of acceptable accuracy for the 1D or 2D cyclic loading. 
However, they generally require complex calibration. Models that provide accurate 
simulations of behaviour under 3D general loading conditions, and, specially, under 
reversed cyclic loading, are somewhat less common.  

The present work thus aims at formulating and implementing, in a finite element code, 
a fibre beam-column model for predicting nonlinear behaviour in shear of RC framed 
structures. As first step of the research, the assessment of a large number of the available 
modelling strategies for the analysis of RC structures under shear action due to cyclic 
loading was carried out. A detailed description of this assessment can be found in [17, 
18]. From this literature review, it resulted that the few existing modelling strategies for 
fibre beam-column elements with shear effects accounted for, present quite different 
conceptual backgrounds and solution strategies with varying degrees of implementation 
complexity and calibration requirements. It was also thus apparent that there is perhaps 
still room for the development of additional numerical models that are not only accurate, 
but also that can be introduced in general purpose finite elements codes, and whose input 
relies solely on engineering properties, thus rendering them more widely applicable to a 
wider range of structural cases, and users.  

In order to reach this objective the work was organised in the following different 
phases, accurately described in the next sections: (i) choice of a reliable constitutive 
model for cracked RC subjected to cyclic loading, (ii) verification of the constitutive 
model using experimental data, (iii) development of a flexure-shear model for cracked 
RC beam-column elements, (iv) implementation of the formulation into a fibre beam-
column element, and (v) verification of the flexure-shear beam model in predicting the 
cyclic response of RC beam-column members and RC shear walls subjected to axial 
force, flexure and shear. 

2. THE ADOPTED CONSTITUTIVE FORMULATION 

Several theories for cracked reinforced concrete subjected to shear are present in the 
literature [19 - 25]. After a careful review of such literature, the Modified Compression 
Field Theory (MCFT), and one of its refinements, represented by the Disturbed Stress 
Field Model (DSFM), stood out as one of those models that seemed capable of accurately 
predicting the shear strength of both reinforced- and prestressed concrete members 
subjected to monotonic loads [20, 25]. Indeed, the procedure (adopting membrane 
elements) has been shown to lead to quite accurate foresights when compared to 
experimental test results on RC panels and shear walls. The main assumptions of MCFT 
can be summarised as follows [26]: 
• Cracked RC is treated as an orthotropic material where cracks are smeared and 

allowed to rotate. The principal strain-stress directions (1, 2) are those 
corresponding to the average compressive and tensile strains (crack directions). 
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• Equilibrium, compatibility and constitutive relations for concrete and steel are 
defined in terms of average strains and stresses. 

• Reinforcement is smeared throughout the element perfectly bonded to concrete, and 
the reinforcement shear stress is negligible.  

• Verifications at crack locations are introduced in order to evaluate the admissible 
shear stress along the crack surface.  

 
In order to enlarge the formulation capability, Vecchio [27] introduced the plastic offsets 
for modelling cyclic loads. Hence, the constitutive relations for concrete and reinforcing 
bars were expanded to account for cyclic loading and the plastic strains were introduced 
as offsets. The elastic components of strains were used to define the effective secant 
stiffnesses, and Mohr’s circle technique was used to track strains experienced during 
previous loading. Palermo and Vecchio [28] improved the constitutive model of concrete 
accounting for the nonlinear unloading, linear reloading with degradation of strength and 
stiffness, and for full/partial loading conditions.  

The MCFT formulation for modelling cracked RC under shear loading was adopted as 
the fibre constitutive model in the proposed modelling strategy, and its implementation 
was checked through a comparison with the experimental results and the predictions 
published by Vecchio et al. for several shear tests performed on RC panels at the 
University of Toronto.   

2.1 Implementation of the formulation 
The implementation of the cyclic formulation of the MCFT refers to the models proposed 
by Vecchio [27], and the improved relationships for concrete proposed by Palermo and 
Vecchio [28, 29]. The implementation process was not straightforward since the 
information about the models were limited and the improvements described in [28, 29] 
were not numerically stable as recognized by the authors. 

The difficulties were mainly related to the plastic strains being stored in memory as 
plastic offsets, the continuous update of the crack direction during loading, and the lack 
of a crack-closing model for concrete. Further, there are still some additional issues 
related to local yielding and accumulation of plastic strains in the reinforcement that are 
not currently properly captured [30].  

During the implementation phase, a number of changes were introduced mainly due to 
the apparent inconsistencies between the original formulation, the results obtained with 
the code VecTor2 [31], and the numerical responses published by Vecchio and Palermo 
[27, 29]. These changes concern mainly the implemented constitutive rules for the 
opening of the cracks, the nonlinear unloading branch for concrete in tension and the 
crack-check verification accounting for strain hardening, as described in the following 
sections with reference to [18].   

 
a) Implemented compatibility and equilibrium conditions 

Considering the stress-strain conditions in a RC element (Figure 1) previously subjected 
to an arbitrary load history, the total strain vector in the x-y reference system is given by 
the sum of the elastic and plastic contributions, as follows: 

{ } { } { }pe εεε += (1)
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Equation (1) works for each reinforcement component and for concrete. Given a stress 
vector {σ} = {σxx, σyy,τxy}T acting at a point in the RC element (Figure 1), the resulting 
total strains {ε} of Equation (1) are such to satisfy the following equilibrium condition: 

{ } [ ]{ } { }oD σεσ −= (2)

where {σo} is the pseudo-stress vector due to the plastic offsets for concrete and 
reinforcements:  

{ } [ ]{ } [ ] { }∑
=

+=
n

i
i

p
sis

p
cco DD

1

εεσ (3)

The matrix [D] is the composite material stiffness matrix, fully populated and symmetric: 

[ ] [ ] [ ]∑
=

+=
n

i
isc DDD

1
(4)

where [Dc] is the concrete material stiffness matrix and [Ds]i are the reinforcement 
component material stiffness matrices in the (x, y) directions. Since the MCFT models the 
reinforced concrete as an orthotropic material in the principal directions (1, 2), it is 
necessary to formulate the material stiffness matrices relative to these directions - [Dc]′
and [Ds]i′, respectively.  

Figure 1. RC membrane element 

Standard transformation matrices - [Tc] and [Ts]i - are then required to rotate from (1, 2) 
to (x, y) directions for concrete, and from αi to (x, y) directions for each i-th 
reinforcement component. The rotation angle in [T] matrix is equal to angle θe of the 
principal elastic strain directions (1, 2) for concrete, and to αi for each steel component, 
leading to the following material matrices: 

[ ] [ ] [ ] [ ]cc
T

cc TDTD ′= and     [ ] [ ] [ ] [ ]isis
T
isis TDTD ′= (5)

Assuming that the Poisson’s effect is negligible, the material stiffness matrix for concrete 
evaluated with respect to the principal directions (1, 2) is computed as in Equation (6), on 
the left. For each steel component, whose ratio is iαρ , the material matrix in the αi

direction is derived as in Equation (6), on the right:  
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The secant moduli are related to a particular state of stress and elastic strain as follows: 

e
ccc fE 111 / ε= , e

ccc fE 222 /ε= ,
21

21

cc

cc
c EE

EEG
+
⋅

= , is
e

isis fE ααα ε/= (7)

Working in the directions x-y, the plastic offsets of the each reinforcement component are 
computed as a function of the plastic strain p

isαε in the direction αi:

{ }
















=
p

isxy

p
isy

p
isx

i
p
s

γ
ε
ε

ε
( )
( )

( ) 















⋅
−⋅
+⋅

=

i
p

is

i
p

is

i
p

is

αε
αε
αε

α

α

α

2sin
2/2cos1
2/2cos1

(8)

The concrete plastic strain vector is calculated in the directions x-y using standard 
transformation of Mohr’s circle of strains, as it will be explained later: 
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where p
cxoldε , p

cyoldε , p
cxyoldγ are the previous plastic strains, p

c1ε∆ and p
c2ε∆ are the increments 

of the plastic strains in directions (1, 2) occurring at a given load step. It has to be pointed 
out that the compressive or tensile response may occur in either of the principal strain 
directions (i.e., 1cc εε = or 2cc εε = ); the other parameters, in terms of strains and stresses, 
are subscripted accordingly.  
 
b) Implemented material relationships 
Figure 2 shows the adopted cyclic reinforcement model, proposed by Vecchio [27]. The 
monotonic envelope is tri-linear with a linear strain hardening portion after the yield 
plateau. The hysteretic response has been modelled after Seckin [32], and the 
Bauschinger effect is represented by a Ramberg-Osgood formulation.  
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Figure 2. Hysteretic model for reinforcement, according to [27] 

The cyclic stress-strain relation for concrete can be described using three types of curves: 
the compressive envelope curve, the tensile envelope curve, and the unloading/reloading 
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curve that connects the two envelope curves. The compressive envelope curve follows the 
Popovics formulation and accounts for compression softening [33]. Concerning concrete 
in tension, the behaviour is linear elastic before cracks appear; a nonlinear descending 
branch then follows when cracks form taking into account the tension stiffening effect. 
The shape and slope of the unloading and reloading responses are dependent on the 
plastic offset strains. The plastic offset is used as parameter in defining the unloading 
path and in determining the degree of damage in the concrete due to cycling. 

Two different models have been followed for defining the trend of the 
unloading/reloading paths as shown in Figure 3 [18], where 'cε is the peak compressive 
strain and 'cf is the corresponding stress, and 'tf is the tensile strength of concrete: on 
the left, the response obtained following the Vecchio model [27]; on the right, the one 
related to Palermo and Vecchio model [29]. In the numerical applications described in 
Section 4, however, only the linear unloading/reloading paths were employed, given that 
numerical problems were encountered when using their nonlinear counterparts [29].   
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Figure 3. Response of an element subjected to uniaxial strain excursions with the 

implemented models for concrete  

The implemented cyclic compressive rules based on the Vecchio model [27] are depicted 
in Figure 4, where εcm is the maximum compressive strain attained during previous 
loading and fcm the corresponding stress, εp is the strain corresponding to the peak stress 
in the base curve, and β is a reduction factor that reflects the softening effect of principal 
tensile strains.  

(a) (b) (c) 

Figure 4. Implemented (a), (b) reloading and (c) unloading paths for concrete in 
compression (adapted from [27]) 
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At each load stage, the instantaneous plastic strain corresponding to a total strain εc is 
calculated with Equation (10), derived by Vecchio [27] through regression analyses of 
extensive experimental data: 

( ) ( )[ ]
( )





<−

>−−
=

pcpc

pcpcpcpcp
c if

if
εεεε

εεεεεεεε
ε

5.1002.0001305.0

5.129.087.0 2

(10)

According to the theory proposed by Vecchio [27], the cyclic tensile rules of concrete are 
linear, as shown in Figure 5 where εtm is the maximum previously attained tensile strain, 
ftm is the corresponding stress and p

cε is the current plastic offset strain computed as in 
Equation (11) or is equal to the compressive plastic strain in Equation (10) if tensile 
stresses develop under compressive straining. In Vecchio’s formulation, no positive 
offsets were considered due to the lack of a suitable model, as shown in Figure 5: 

0=p
cε (11)

Shown in Figure 3 and Figure 5 are the implemented constitutive rules for the opening of 
cracks. If concrete is damaged during the compression at the initial loading, tensile 
cracking would occur at the compressive strain due to the residual plastic strain 
developed by the initial compressive loading. After the first unloading, the tensile base 
curve is shifted such that it coincides with the plastic offset calculated from the 
compressive regime. 

(a) (b) (c) 

Figure 5. Implemented (a), (b) reloading  and (c) unloading paths for concrete in tension 
(adapted from [27]) 

In particular, the tensile strength and strain are computed as a function of the previous 
maximum compressive strain, εcm, and of the strain at which the unloading curve reaches 
the strain axis, p

cε , according to the formulation proposed by Steven et al. [34]:     

ft′* = ft′/a, εt′* = p
cε + ft′*/Ecr

*, with  a = (1 + 0.30 (εcm/εp)4) (12)

where ft′ is the maximum tensile strength for undamaged concrete, εp is the strain 
corresponding to the peak compressive stress in the base curve, p

cε is the compressive 
plastic deformation of Equation (10). Knowing the Young modulus Ec of undamaged 
concrete, the parameter Ecr

* is the stiffness of the linear tensile curve up to ft′*:
Ecr

*=Ec (0.98 - 0.70⋅(εcm/εp)0.41) > 0.05 Ec (13)
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c) Implemented deformation updating rules 
When considering constitutive relationships for concrete, the pertinent strain directions 
are those parallel to the principal elastic concrete strains, whose inclination is θ e (Figure 
6a). However, these axes rotate as the load changes. As such, a critical requirement of the 
cyclic formulation is to define and retain in memory the concrete plastic and maximum 
strains and their strain envelopes with respect to the x-y axes, and transform them to and 
from arbitrary orientations of the principal directions using Mohr’s circle approach 
(Figure 6b). The latter is used to track strains experienced during previous loading, 
considering the continuous changing of the principal directions.  

As introduced in Equation (9), the update of the plastic strains is computed as a 
function of the increments (which may be positive or negative) p

c1ε∆ and p
c2ε∆ , and the 

orientation θ e. Similarly, the maximum compressive strains εcmx, εcmy, γcmxy and the 
maximum tensile strains εtmx, εtmy, γtmxy are updated, knowing the compressive and tensile 
increments − 1cmε∆ , 2cmε∆ and 1tmε∆ 2tmε∆ , respectively − and the orientation θ e. Mohr’s 
circle relationships transform them from the reference axes x-y to the principal elastic 
strains directions 1-2 whose orientation is θ e, and vice-versa. 

(a)                  (b) 
Figure 6. Defining envelopes of concrete strains using Mohr’s circle: (a) principal axes in 

cracked concrete, and (b) plastic strain 

2.2 Verification of the implemented formulation 
The implemented formulation was checked firstly through a comparison with the 
experimental results and the numerical predictions published by Vecchio et al. [20, 27, 
29, 34-36, 37] for several shear tests performed on RC panels tested at the University of 
Toronto, under monotonic and cyclic load histories. Moreover, the comparison was also 
made with the results of the code VecTor2: it is a finite element program developed by 
Vecchio [31], where the monotonic and cyclic formulations of the MCFT are 
implemented. These comparisons gave the possibility to identify some inconsistencies 
between the theory originally proposed by Vecchio et al., the numerical predictions 
published by the latter and the results obtained with the more recent and certainly more 
up-to-date code VecTor2. 

In particular, the reproduction of the test results of several RC panels and membrane 
elements subjected to monotonic loading has been carried out without any modification 
of the formulations originally proposed for the MCFT/DSFM. The material constitutive 
models were implemented taking into account all the aspects described in the 
MCFT/DSFM formulations (i.e., compression softening, tension stiffening, local checks 
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at crack location, etc). As reported in Ceresa [18], good agreement was found with both 
the observed response and the numerical predictions published by Vecchio et al. 

The verification of the implemented cyclic formulation was carried out reproducing the 
response of RC panels tested at the University of Toronto by Stevens et al. [34] and 
Villani [37]. Good agreement was verified between the implemented formulation and the 
response obtained with the code VecTor2, while discrepancies were found with the 
numerical predictions published in literature [27, 29].  

In the majority of analysed cases, the MCFT theory proved to be capable of 
reproducing the fundamental aspects of the experimental responses for both monotonic 
and cyclic loading conditions (as shown in Section 4). However, some additional issues 
related to the local accumulation of strains in the reinforcement, the tensile plastic strain 
and, hence, the crack closing model for concrete, are not currently captured in a proper 
way, and will require further investigations. 

3.IMPLEMENTATION OF THE FLEXURE-SHEAR MODEL  

After the choice of the constitutive models, the next steps were the development of the 
sectional formulation, and the implementation of the proposed flexure-shear model into a 
fibre beam-column finite element. A two-dimensional Timoshenko fibre beam-column 
element was developed.  

3.1 Section state determination 
Considering the cross section depicted in Figure 7, the stresses and strains of each i-th 
fibre are related by means of the following constitutive relations: 

i
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DDD
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333231

232221

131211
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which can be rewritten in compact form as: 
i
o

iii σεDσ −= (15)

where D i is the composite material stiffness matrix in the reference system x-y, and i
oσ is 

the pseudo-stress vector accounting for prestrains (i.e. plastic deformations, elastic 
offsets, strains due to shear slip). 

For the determination of the fibre strains, the following hypotheses were introduced. 
With the plane section assumption, the axial strain (εxx) is known for each fibre. 
Assuming that the shear strain is uniform along the section according to the Timoshenko 
beam theory, the shear distortion (γxy) components of the strain field are calculated for the 
entire section (for all the fibres, as shown in Figure 7, on the right). Accordingly, each 
fibre has two input variables, axial strain (εxx) and shear distortion (γxy), based on the 
element deformations − axial deformation (εo), section curvature (χ) and shear 
deformation (γo). The only unknown is the transversal strain within each fibre (εyy). The 
latter is initially guess-estimated to complete the definition of the strain field, allowing 
stresses and forces to be determined from the constitutive material relationships and 
geometric properties for each fibre (dimensions, concrete properties and reinforcement 
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percentages). For the initial estimate of the transversal strain εyy within each fibre, the 
resulting strain value from the previous load step was used.  

It has been assumed that transversal stress within each fibre is equal to zero. Therefore, 
the transverse strain εi

yy is iteratively determined for each fibre as follows:  
i

oyyxyxxi
yy

i
yy DD

DD








+

+
−=⇒=

2222

23210
σγε

εσ (16)

where D21, D22, D23 are the coefficients of the composite material matrix [D], and σoyy is 
the transversal component of the pseudo-stress vector σo

i of Equation (3). It results that 
the transversal strain is expressed as a function of both axial and shear deformations and, 
additionally, of the transversal component σoyy of the pseudo-stress vector where the 
plastic deformations are accounted for.  

Once the equilibrium in the transverse direction is achieved within a specific tolerance 
error for each fibre, the static condensation of Equation (14) leads to the determination of 
the axial and shear stresses for each fibre: 

i
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(17)

where k11, k12, k21, k22 are the coefficients of the condensed composite material matrix 
(2×2), and α12 =D12/D22, and α32= D32/D22. The condensed composite stiffness matrix 
establishes a direct coupling between the axial and the shear strains, and therefore 
between axial and shear stresses at sectional level.  

The iterative procedure for the section state determination is fully described in the 
flowchart in Figure 7. It must be pointed out that in this kind of model the bulk of the 
computational demand is the fibre state determination (i.e., constitutive behavior 
monitoring).  

3.2 Implementation of a displacement-based Timoshenko fibre beam element 
The element state determination is schematically described in Figure 7. The developed 
fibre beam-column element has been implemented in FEAPpv [38]. 

The sectional model previously described has been adopted for the development of a 
two-dimensional fibre beam element. A classical displacement-based approach was 
followed: the displacement fields are approximated with the product of the shape 
functions by the corresponding nodal displacements. In the case of a 2D finite element, 
three are the degrees of freedom (DOFs) per node − the axial u(x) and transversal v(x)
displacements, and the rotation θz(x), all of which approximated through linear shape 
functions: 









⋅=

⋅=

⋅=

z
θ

v

u

θN

vN
uN

ˆ)()(

ˆ)()(

ˆ)()(

xx

xxv
xxu

z
zθ

(18)

where û , v̂ and zθ̂ are the nodal DOFs corresponding respectively to the longitudinal, 
transverse displacements and to the rotation, and x is the beam axis whose cross-section is 
in the y-z plane and length is l, and the shape-functions are set as:  

Page 10 of 22

http://mc.manuscriptcentral.com/eqe

Earthquake Engineering and Structural Dynamics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review







 −===

l
x

l
xxxx z ,1)()()( θvu NNN (19)

no

Element internal forces & Stiffness matrix

i=n

From MCFT, total material stiffness matrix Di(3,3) 
&

from equilibrium condition in
transverse direction for each fibre0=i

yyσ

ii
oyy

ii
xx

ii
xy

ii
yy 22222123 D/D/)DD( σεγε ++−=

yes

Section forces N, M and V & Section stiffness matrix 
through summation of each fibre contribution 

i=i+1j=j+1

Nodal displacements

For each Gauss points j=1, m

Linear shape functions + Bubble term 

For each fibre i=1, n

from plane section assumption      

tentative value

oo γχε and,

i
xxε
i
xyγ

i
yyε

oγ=

j=m

i
o

iii σεDσ −=

Figure 7. Element state determination of the displacement-based Timoshenko fibre 
element 

According to the Timoshenko assumption that cross-sections remain plane but not 
necessarily normal to the deformed longitudinal axis, the shear deformation is derived 
from: 

→≠−′ 0)()( xxv zθ 0)( ≠xxyε (20)

Using the shape functions of Equation (19) and their first derivatives, the shear strain 
γxy(x) = 2 εxy(x) can be computed as follows: 

z
θv θNvB z ˆ)(ˆ)()( xxxxy −=γ (21)

The Timoshenko beam finite element with linear interpolation of both transverse 
deflection v(x) and rotation θz(x) is the simplest possible element formulation. However, 
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it leads to very stiff response predictions for slender beams, i.e. as the length-to-thickness 
ratio becomes large. Such behaviour is known as shear locking [39], and it is due to the 
inability of the element to represent a constant state of transverse shear strain γxy. The 
locking is due to the inconsistency of the interpolation used for v(x) and θz(x).  

In order to overcome the shear-locking problem, the element formulation described 
earlier was improved using the linear shape functions of Equation (19) for all 
displacement fields with the addition of a linked term, or bubble function Nb, for the 
transversal displacement field, following the formulation proposed by Auricchio [40]:  
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Hence, the shear deformation can be derived as follows: 

zbz
θv θDθNvB ˆ)(ˆ)(ˆ)()( xxxx z

xy +−=γ (23)

with the introduction of the following quantities:   
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The element stiffness matrix is computed by means of linearisation of the residual 
functions with respect to the nodal displacements, hence the following terms (2 × 2 sub-
matrices) are derived: 

dldA
l

xx

xx
A

T uu
uu BBK ∫ ∫ ∂

∂
=

ε

σ)( ;

dldA
l

xy

xx
A

T vu
uv BBK ∫ ∫ ∂

∂
=

γ
σ)(

dldAy z

l
xx

xx
A

T )()( θu
uθ BBK −

∂
∂

= ∫ ∫ ε
σ [ ] dldA

l

z

xy

xx
A

T∫ ∫ +−
∂
∂

+ bθu DNB
γ
σ)(

dldA
l

xx

xy

A

T uv
vu BBK ∫ ∫ ∂

∂
=

ε
τ

)( ;

dldA
l

xy

xy

A

T vv
vv BBK ∫ ∫ ∂

∂
=

γ
τ

)(

dldAy z

l
xx

xy

A

T )()( θv
vθ BBK −

∂
∂

= ∫ ∫ ε
τ [ ] dldA

l

z

xy

xy

A

T∫ ∫ +−
∂

∂
+ bθv DNB

γ
τ

)(

dldAy
l

xx

xx
A

Tz )()( uθ
θu BBK −

∂
∂

= ∫ ∫ ε
σ [ ] dldA

l
xx

xy

A

Tz )( uθb BND∫ ∫ ∂
∂

−+
ε
τ

Page 12 of 22

http://mc.manuscriptcentral.com/eqe

Earthquake Engineering and Structural Dynamics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

dldAy
l

xy

xx
A

Tz )()( vθ
θv BBK −

∂
∂

= ∫ ∫ γ
σ [ ] dldA

l
xy

xy

A

Tz )(∫ ∫ ∂

∂
−+ vθb BND

γ
τ

( ) [ ] +












−−
∂
∂

+
∂
∂

= ∫ ∫ dldAyy
l

z

xy

xxz

xx

xx
A

Tz θbθθ
θθ ΝDBBK )()( 2

γ
σ

ε
σ

[ ] ( ) [ ] dldAy
l

z

xy

xyz

xx

xy

A

Tz∫ ∫ 











−
∂

∂
+−

∂

∂
− θbθθb NDBND

γ
τ

ε
τ

where the coefficients xxxx εσ ∂∂ , ,xyxx γσ ∂∂ ,xyxy γτ ∂∂ and xxxy ετ ∂∂ are derived 
from the static condensation in Equation (17). These terms are different from zero due to 
the adopted flexure-shear fibre model. Therefore, the stiffness matrix directly includes the 
coupling between flexure and shear contributions. Moreover, the presence of the bubble 
function introduces additional terms in the stiffness matrix coefficients.  
The internal forces are computed as follows:  

∫
∫
∫
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(25)

4.NUMERICAL VERIFICATION OF THE FLEXURE-SHEAR MODEL 

The proposed modelling strategy was verified by means of numerical studies and 
comparisons with experimental results. In particular, the experimental responses of RC 
columns and shear walls subjected to cyclic loading were taken into account. The 
response “predictions” obtained with the developed fibre-shear formulation are also 
compared with the numerical results obtained with a fibre-flexural formulation [41]. In 
what follows, only a sample of representative results is given, whilst a complete set of 
case-studies is described in Ceresa et al. [42]. Each test specimen will be labelled 
according to its typology and aspect ratio, as described below. 

4.1 Verification against experimental results on short piers with solid cross-section 
The flexure-shear formulation was firstly validated by modelling large-scale RC squat 
columns with full cross-section (labelled as “Col_Solid_”). The numerical predictions of 
four case-studies are presented in the following. The first application refers to the RC 
column (Column OA5) tested in Japan by Arakawa et al. [43]; a further simulation makes 
use of the results of the pier whose test was conducted in Japan by Imai and Yamamoto 
[44]; the third case (Column SC3) is related to the tests performed at the University of 
Texas by Aboutaha et al. [45]; and the final example presented here is a pier (Specimen 
3CLH18) belonging to the testing campaign conducted at the University of Berkeley by 
Lynn [46]; the latter was modelled by Saritas [15] using a different type of fibre model 
with shear modelling. In the following, the specimens will be named after their aspect 
ratio as: Col_Solid_1.25, Col_Solid_1.65, Col_Solid_2.67, Col_Solid_3.22, respectively. 
The applied axial loads, the geometric and mechanical properties of the four case studies 
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are given in Table I; the lateral loading system displaced three of the columns 
(Col_Solid_1.25, 1.65 and 3.22) in double bending and the last in single bending.  

The force-displacement responses are plotted from Figure 8 to Figure 11, comparing 
the experimental results with the numerical simulations for the piers, with a fibre-flexure 
model (on the left) and with the developed fibre-shear model (on the right).   

 
Table I. Geometry and material parameters for non-hollow cross-section squat columns 

 Col_Solid_1.25 
L = 225 mm 

Col_Solid_1.65 
L = 825 mm 

Col_Solid_2.67 
L = 1219.2 mm 

Col_Solid_3.22 
L = 1473.2 mm 

Reference Arakawa et al.43 Imai and 
Yamamoto44 Aboutaha et al.45 Lynn46 

Scale factor 1:2 1:2  1:1 1:2 
Outer perimeter b × h
(mm) 180 × 180 400 × 500 914.4 × 457.2 457.2 × 457.2

Aspect ratio L/h 1.25 1.65 2.67 3.22 
Axial load (kN) -476 -392 - -503 
Concrete strength (MPa) -33.0 -27.1 -21.9 -26.9 
Strain at peak stress -0.0024 -0.0022 -0.002 -0.0022 
Concrete elastic modulus 
(MPa) 26999 24467 21995 24377 

Cracking stress (MPa) 1.89 1.72 1.54 1.71 

N° Long. bars and φ (mm) 8 φ 12.7 14 φ 22 4 φ 25.5 +  
12 φ 25 8 φ 31.75 

Long. yielding  
stress (MPa) 340 318 434 331 

Stirrups φ and @ (mm) φ 4@ 64.3 φ 9@ 100 φ 9.53@ 406.4 φ 9.5@ 457.2 
Trans. yielding stress 
(MPa) 249 336 400 400 
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Figure 8. Force-displacement response of specimen Col_Solid_1.25 [43] using a fibre-
flexure model (on the left), and the implemented fibre-shear model (on the right) 
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Figure 9. Force-displacement response of specimen Col_Solid_1.65 [44] using a fibre-
flexure model (on the left), and the implemented fibre-shear model (on the right) 
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Figure 10. Force-displacement response of specimen Col_Solid_2.67 [45] using a fibre-
flexure model (on the left), and the implemented fibre-shear model (on the right) 

 
Comparisons with the experimental results show significant improvement in response 
predictions when the flexural formulation is replaced by the developed fibre-shear 
formulation. Even if the latter leads to an overestimation of the initial stiffness and an 
exaggerating pinching effect, the predicted response shows a better agreement with the 
measured behaviour in terms of both energy dissipation and shear capacity. The 
experimentally observed lateral strength degradation is well captured for specimens 
Col_Solid_1.25 and Col_Solid_1.65, whereas the ultimate lateral load is not well 
reproduced for the Col_Solid_2.67 and Col_Solid_3.22 case-studies.    

Page 15 of 22

http://mc.manuscriptcentral.com/eqe

Earthquake Engineering and Structural Dynamics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
Col_Solid_3.22

-400

-300

-200

-100

0

100

200

300

400

-40 -30 -20 -10 0 10 20 30 40

Deflection [mm]

La
te

ra
lF

or
ce

[k
N

]
Experiment

Flexure model

Col_Solid_3.22
-400

-300

-200

-100

0

100

200

300

400

-40 -30 -20 -10 0 10 20 30 40

Deflection [mm]

La
te

ra
lF

or
ce

[k
N

]

Experiment

Shear model

Figure 11. Force-displacement response of specimen Col_Solid_3.22 [46] using a fibre-
flexure model (on the left), and the implemented fibre-shear model (on the right) 

 

4.2 Verification against experimental results on short piers with hollow cross-section 
A second set of analyses focused on modelling the response of squat RC columns with 

hollow cross-section (labelled as “Col_Hollow_”). In what follows, two case-studies are 
presented. The first example is the pier tested by Pinto et al. [47] at the European 
Laboratory for Structural Assessment (ELSA) – Col_Hollow_1.75. The same example 
has been analysed in detail by Pinto et al. [6], Ranzo and Petrangeli [7], Petrangeli [8] 
and Martinelli [9], using different types of fibre beam elements for shear modelling. The 
second simulation makes use of the results on piers tested at the University of Pavia [48] 
– Col_Hollow_2.0.  Geometry and material properties of these two hollow columns are 
summarised in Table II.  

 
Table II. Geometry and material parameters for hollow cross-section squat columns 

 Col_Hollow_1.75 
L = 2800 mm 

Col_Hollow_2.0 
L = 900 mm 

Reference Pinto et al.47 Calvi et al.48 
Scale factor 1:1 1:4 
Outer perimeter bo × ho (mm) 800 × 1600 450 × 450
Inner perimeter bi × hi (mm) 480 × 1280 300 × 300
Aspect ratio L/ho 1.75 2.0 
Axial load (kN) -1700 -250 
Concrete strength (MPa) -35.4 -35.0 
Strain at peak stress -0.0025 -0.0025 
Concrete elastic modulus (MPa) 27964 27806 
Cracking stress (MPa) 1.96 1.95 
N° Long. bars and φ (mm) 40 φ 8 + 28φ 12 + 12 φ 10 24 φ 8
Long. yielding stress (MPa) 503 & 558 & 489 520 
Stirrups φ and @ (mm) φ 5@ 60 φ 3@ 75 
Trans. yielding stress (MPa) 700 710 
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The force-displacement responses of Col_Hollow_1.75 and Col_Hollow_2.0 are plotted 
in Figure 12 and Figure 13, respectively, comparing the experimental results with the 
performed numerical simulations – with flexure modelling (on the left), and with shear 
modelling (on the right).  

The developed modelling strategy seems to be capable of reproducing the measured 
responses in a satisfactory way, mainly for the Col_Hollow_1.75. Despite the 
overestimation of the initial stiffness in specimen Col_Hollow_2.0, the flexure-shear 
model still leads to improved predictions of the overall response if compared with the 
predictions obtained with the flexural fibre model. However, the model is not able to 
capture well the degradation of the strength and stiffness for the high ductility levels. 
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Figure 12. Force-displacement response of specimen Col_Hollow_1.75 [47] using a 
fibre-flexure model (on the left), and the implemented fibre-shear model (on the right) 
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Figure 13. Force-displacement response of specimen Col_Hollow_2.0 [48] using a fibre-
flexure model (on the left), and the implemented fibre-shear model (on the right)  

4.3 Verification against experimental results on walls 
The performance of the developed modelling strategy has also been assessed against the 
results of two RC structural walls (labelled as “Wall_”). The first results herein discussed 
refer to a RC specimen (SW35) from the experimental programme of Elnashai and 
Salama [49] carried out at the Imperial College London. The second validation refers to 
one of the RC walls (WSH3) tested by Dazio et al. [50] at the Swiss Federal Institute of 
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Technology (ETH) of Zurich. The same example was analysed by Martinelli [10], using a 
different type of fibre beam element for shear modelling. In the following, the specimens 
will be named after their aspect ratio as: Wall_2.0, Wall_2.28, respectively.  
The geometry and the mechanical properties of the two walls are given in Table III. The 
numerical simulations of the hysteretic responses of the Wall_2.0 and Wall_2.28 with the 
flexure and the shear models are shown in Figure 14 and Figure 15, respectively.   
 

Table III. Geometry and material parameters for RC shear walls 
 Wall_2.0 

L = 1200 mm  
Wall_2.28 

L = 4560 mm 
Reference Elnashai and Salama49 Dazio et al.50

Scale factor 1:2.5 1:2 
Outer perimeter bw × lw (mm) 60 × 600 150 × 2000
Aspect ratio 2.0 2.28 
Axial load (kN) -0.2 -626 
Concrete strength (MPa) -48.4 -39.4 
Strain at peak stress -0.0022 -0.0022 
Concrete elastic modulus (MPa) 32698 35700 
Cracking stress (MPa) 2.29 2.07 
Web - N° Long. bars and φ (mm) 6 φ 12 + 4 φ 6 22 φ 8
Long. yielding stress (MPa) of φ 8 450 700.2 
Egde - N° Long. bars and φ (mm)  4 φ 8 + 2 φ 12 6φ 12 
Long. yielding stress (MPa) of φ 12 450 725.5 
Web - Stirrups φ and @ (mm) φ 5@ 60  φ 6 @150  
Edge - Stirrups φ and @ (mm) φ 5@ 60 + φ 5@ 20 φ 6 @150 + φ 6 & φ 4.2 @75 
Trans. yielding stress (MPa) of φ 6 450 615 
Trans. yielding stress (MPa) of φ 4.2 450 552.5 
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Figure 14. Force-displacement response of specimen Wall_2.0 [49] using a fibre-flexure 
model (on the left), and the implemented fibre-shear model (on the right)  
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Figure 15. Force-displacement response of specimen Wall_2.28 [50] using a fibre-flexure 
model (on the left), and the implemented fibre-shear model (on the right) 

 
Once again, it can be observed that the fibre-shear model allows the experimental results 
to be reproduced with relatively good accuracy, this time without a conspicuous initial 
stiffness overestimation, as had been observed for the case of columns.  

5. CONCLUSIONS 

The present research featured the objective of developing a fibre flexure-shear model for 
seismic analysis of reinforced concrete framed structures. The work started with the 
assessment of the existing fibre beam-column elements developed in order to account for 
shear. Further effort was required for the choice of a formulation for cracked reinforced 
concrete accounting for shear effects, under monotonic and cyclic loading conditions.  

A bi-axial fibre constitutive model was developed according to the Modified 
Compression Field Theory (MCFT). The shear constitutive model was implemented and 
then verified with comparisons against experimental results. In particular, several RC 
panel and membrane elements tested at the University of Toronto were considered. The 
shear constitutive model was then implemented into a fibre beam-column element, after 
the development of the formulation for the section state determination. The 2D 
Timoshenko fibre element was formulated according to a displacement-based approach. 
To avoid shear locking phenomena, the linear shape functions were enriched by the 
introduction of a bubble function.   

The flexure-shear formulation was verified against experimental tests on RC short 
piers with solid and hollow cross-sections, and on RC rectangular walls. Comparisons 
with experimental results on these shear-sensitive elements showed relatively good 
improvement in response “predictions” when the flexural formulation is replaced by the 
developed fibre-shear formulation. It is also recalled that the developed model does not 
require empirical test-matching calibration; only engineering parameters (e.g. material 
strengths, reinforcement geometrical ratios) are required as input.  

Nonetheless, numerical difficulties were encountered, mainly associated to initially 
unknown limitations of the employed constitutive model. Further, post-peak strength 
degradation is not yet fully captured. Hence, the nonlinear constitutive model 
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implemented for concrete requires additional improvements; e.g. better post-peak 
behaviour and a crack-closing model. Additional experimental testing is also likely to be 
necessary to corroborate the cyclic relationships for concrete in tension and for 
developing a plastic tensile offset model in order to improve the simulation of the 
pinching phenomenon. Finally, extension to 3D loading is also to be carried out. In other 
words, notwithstanding the relatively satisfactory results, it is recognised that further 
research work and developments are still very much required.  
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