381 research outputs found

    The Gelling Ability of Some Diimidazolium Salts: Effect of Isomeric Substitution of the Cation and Anion

    Get PDF
    The gelling ability of some geminal imidazolium salts was investigated both in organic solvents and in water solution. Organic salts differing either in the cation or anion structure were taken into account. In particular, the effects on the gelphase formation of isomeric substitution on the cation or anion as well as of the use of mono- or dianions were evaluated. As far as the cation structure is concerned, isomeric cations, such as 3,3’-di-n-octyl-1,1’-(1,4-phenylenedimethylene)diimidazolium and 3,3’-di-n-octyl-1,1’-(1,3-phenylenedimethylene) diimidazolium, were used. On the other hand, in addition to the bromide anion, isomeric dianions, such as the 1,5- and 2,6-naphthalenedisulfonate anions, were also examined. After preliminary gelation tests, different factors affecting the obtained gel phases, such as the nature of the solvent, organogelator concentrations, and action of external stimuli, were analyzed. The gel-phase formation was also studied as a function of time, by using resonance light scattering measurements. Gel morphologies were analyzed by scanning electron microscopy. To further support the understanding of the different behavior shown by the isomeric cations, some representative ion pairs were analyzed by DFT-based investigations. The collected data underline the significant role played by isomeric substitution of both cation and anion structures in determining the gelling capability of the investigated salts, as well as the properties of the gel phases. Finally, DFT investigations were helpful in the identification of the structural features affecting the self-assembly

    A biofeedback cycling training to improve locomotion: a case series study based on gait pattern classification of 153 chronic stroke patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The restoration of walking ability is the main goal of post-stroke lower limb rehabilitation and different studies suggest that pedaling may have a positive effect on locomotion. The aim of this study was to explore the feasibility of a biofeedback pedaling treatment and its effects on cycling and walking ability in chronic stroke patients. A case series study was designed and participants were recruited based on a gait pattern classification of a population of 153 chronic stroke patients.</p> <p>Methods</p> <p>In order to optimize participants selection, a k-means cluster analysis was performed to subgroup homogenous gait patterns in terms of gait speed and symmetry.</p> <p>The training consisted of a 2-week treatment of 6 sessions. A visual biofeedback helped the subjects in maintaining a symmetrical contribution of the two legs during pedaling. Participants were assessed before, after training and at follow-up visits (one week after treatment). Outcome measures were the unbalance during a pedaling test, and the temporal, spatial, and symmetry parameters during gait analysis.</p> <p>Results and discussion</p> <p>Three clusters, mainly differing in terms of gait speed, were identified and participants, representative of each cluster, were selected.</p> <p>An intra-subject statistical analysis (ANOVA) showed that all patients significantly decreased the pedaling unbalance after treatment and maintained significant improvements with respect to baseline at follow-up. The 2-week treatment induced some modifications in the gait pattern of two patients: one, the most impaired, significantly improved mean velocity and increased gait symmetry; the other one reduced significantly the over-compensation of the healthy limb. No benefits were produced in the gait of the last subject who maintained her slow but almost symmetrical pattern. Thus, this study might suggest that the treatment can be beneficial for patients having a very asymmetrical and inefficient gait and for those that overuse the healthy leg.</p> <p>Conclusion</p> <p>The results demonstrated that the treatment is feasible and it might be effective in translating progresses from pedaling to locomotion. If these results are confirmed on a larger and controlled scale, the intervention, thanks to its safety and low price, could have a significant impact as a home- rehabilitation treatment for chronic stroke patients.</p

    Benzo[b]tiophen-3-ol derivatives as effective inhibitors of human monoamine oxidase: design, synthesis, and biological activity

    Get PDF
    A series of benzo[b]thiophen-3-ols were synthesised and investigated as potential human monoamine oxidase (hMAO) inhibitors in vitro as well as ex vivo in rat cortex synaptosomes by means of evaluation of 3,4-dihydroxyphenylacetic acid/dopamine (DOPAC/DA) ratio and lactate dehydrogenase (LDH) activity. Most of these compounds possessed high selectivity for the MAO-B isoform and a discrete antioxidant and chelating potential. Molecular docking studies of all the compounds underscored potential binding site interactions suitable for MAO inhibition activity, and suggested structural requirements to further improve the activity of this scaffold by chemical modification of the aryl substituents. Starting from this heterocyclic nucleus, novel lead compounds for the treatment of neurodegenerative disease could be developed

    Case report: The CCDC103 variant causes ultrastructural sperm axonemal defects and total sperm immotility in a professional athlete without primary ciliary diskinesia

    Get PDF
    Primary ciliary dyskinesia (PCD) is an inherited autosomal-recessive disorder characterized by abnormal ciliary motion, due to a defect in ciliary structure and/or function. This genetic condition leads to recurrent upper and lower respiratory infections, bronchiectasis, laterality defect, and subfertility. Male infertility is often associated with PCD, since the ultrastructure of the axoneme in the sperm tail is similar to that of the motile cilia of respiratory cells. We present the first reported case of a male patient from a non-consanguineous Italian family who exhibited a severe form of asthenozoospermia factor infertility but no situs inversus and absolutely no signs of the clinical respiratory phenotype, the proband being a professional basketball player. Whole-exome sequencing (WES) has identified a homozygote mutation (CCDC103 c.461 A &gt; C, p.His154Pro) in the proband, while his brother was a heterozygous carrier for this mutation. Morphological and ultrastructural analyses of the axoneme in the sperm flagellum demonstrated the complete loss of both the inner and outer dynein arms (IDA and ODA, respectively). Moreover, immunofluorescence of DNAH1, which is used to check the assembly of IDA, and DNAH5, which labels ODA, demonstrated that these complexes are absent along the full length of the flagella in the spermatozoa from the proband, which was consistent with the IDA and ODA defects observed. Noteworthy, TEM analysis of the axoneme from respiratory cilia showed that dynein arms, although either IDAs and/or ODAs seldom missing on some doublets, are still partly present in each observed section. This case reports the total sperm immotility associated with the CCDC103 p.His154Pro mutation in a man with a normal respiratory phenotype and enriches the variant spectrum of ccdc103 variants and the associated clinical phenotypes in PCD, thus improving counseling of patients about their fertility and possible targeted treatments

    Road traffic pollution and childhood leukemia: a nationwide case-control study in Italy

    Get PDF
    Background The association of childhood leukemia with traffic pollution was considered in a number of studies from 1989 onwards, with results not entirely consistent and little information regarding subtypes. Aim of the study We used the data of the Italian SETIL case-control on childhood leukemia to explore the risk by leukemia subtypes associated to exposure to vehicular traffic. Methods We included in the analyses 648 cases of childhood leukemia (565 Acute lymphoblastic–ALL and 80 Acute non lymphoblastic-AnLL) and 980 controls. Information on traffic exposure was collected from questionnaire interviews and from the geocoding of house addresses, for all periods of life of the children. Results We observed an increase in risk for AnLL, and at a lower extent for ALL, with indicators of exposure to traffic pollutants. In particular, the risk was associated to the report of closeness of the house to traffic lights and to the passage of trucks (OR: 1.76; 95% CI 1.03–3.01 for ALL and 6.35; 95% CI 2.59–15.6 for AnLL). The association was shown also in the analyses limited to AML and in the stratified analyses and in respect to the house in different period of life. Conclusions Results from the SETIL study provide some support to the association of traffic related exposure and risk for AnLL, but at a lesser extent for ALL. Our conclusion highlights the need for leukemia type specific analyses in future studies. Results support the need of controlling exposure from traffic pollution, even if knowledge is not complete

    Metabolomic Profiling, Antioxidant and Antimicrobial Activity of Bidens pilosa

    Get PDF
    Bidens pilosa L. (fam. Asteraceae) is an annual herb used globally in phytotherapy and each plant material or the whole plant have been declared to be effective. Therefore, the aim of the present study was to conduct metabolomic profiling of different plant materials, including the quali-quantitative composition of phenolic compounds. The intrinsic scavenging/reducing properties and antimicrobial effects of the extracts were assayed against numerous bacterial, Candida and dermatophytes species, whereas docking runs were conducted for tentatively unravelling the mechanism of action underlying antimicrobial effects. Oligosaccharide, disaccharide and fatty acids were present at higher concentrations in root rather than in the other plant parts. Monoglycerides were more abundant in stem than in the other plant parts, whereas peptide and diterpenoid were prominent in leaf and root, respectively. By contrast, amino acids showed very different distribution patterns in the four plant parts. Regarding the phenolic composition, appreciable levels of caftaric acid were found in most of the analyzed methanol extracts, that were also particularly efficacious as antiradical and anti-mycotic agents against C. albicans and dermatophytes. The docking experiments also showed a micromolar affinity of caftaric acid towards the lanosterol 14α-demethylase, deeply involved in fungal metabolism. In conclusion, the present study corroborates the B. pilosa as a phytotherapy remedy against infectious disease

    Single Primer Enrichment Technology (SPET) for High-Throughput Genotyping in Tomato and Eggplant Germplasm

    Get PDF
    [EN] Single primer enrichment technology (SPET) is a new, robust, and customizable solution for targeted genotyping. Unlike genotyping by sequencing (GBS), and like DNA chips, SPET is a targeted genotyping technology, relying on the sequencing of a region flanking a primer. Its reliance on single primers, rather than on primer pairs, greatly simplifies panel design, and allows higher levels of multiplexing than PCR-based genotyping. Thanks to the sequencing of the regions surrounding the target SNP, SPET allows the discovery of thousands of closely linked, novel SNPs. In order to assess the potential of SPET for high-throughput genotyping in plants, a panel comprising 5k target SNPs, designed both on coding regions and introns/UTRs, was developed for tomato and eggplant. Genotyping of two panels composed of 400 tomato and 422 eggplant accessions, comprising both domesticated material and wild relatives, generated a total of 12,002 and 30,731 high confidence SNPs, respectively, which comprised both target and novel SNPs in an approximate ratio of 1:1.6, and 1:5.5 in tomato and eggplant, respectively. The vast majority of the markers was transferrable to related species that diverged up to 3.4 million years ago (Solanum pennellii for tomato and S. macrocarpon for eggplant). Maximum Likelihood phylogenetic trees and PCA outputs obtained from the whole dataset highlighted genetic relationships among accessions and species which were congruent with what was previously reported in literature. Better discrimination among domesticated accessions was achieved by using the target SNPs, while better discrimination among wild species was achieved using the whole SNP dataset. Our results reveal that SPET genotyping is a robust, high-throughput technology for genetic fingerprinting, with a high degree of cross-transferability between crops and their cultivated and wild relatives, and allows identification of duplicates and mislabeled accessions in genebanks.This work has been funded by the European Union's Horizon 2020 Research and Innovation Programme under the grant agreement number 677379 (G2P-SOL project: Linking genetic resources, genomes, and phenotypes of solanaceous crops).Barchi, L.; Acquadro, A.; Alonso-Martín, D.; Aprea, G.; Bassolino, L.; Demurtas, O.; Ferrante, P.... (2019). Single Primer Enrichment Technology (SPET) for High-Throughput Genotyping in Tomato and Eggplant Germplasm. Frontiers in Plant Science. 10:1-17. https://doi.org/10.3389/fpls.2019.01005S11710Acquadro, A., Barchi, L., Gramazio, P., Portis, E., Vilanova, S., Comino, C., … Lanteri, S. (2017). Coding SNPs analysis highlights genetic relationships and evolution pattern in eggplant complexes. PLOS ONE, 12(7), e0180774. doi:10.1371/journal.pone.0180774Anderson, J. A., Churchill, G. A., Autrique, J. E., Tanksley, S. D., & Sorrells, M. E. (1993). Optimizing parental selection for genetic linkage maps. Genome, 36(1), 181-186. doi:10.1139/g93-024Barchi, L., Pietrella, M., Venturini, L., Minio, A., Toppino, L., Acquadro, A., … Rotino, G. L. (2019). A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Scientific Reports, 9(1). doi:10.1038/s41598-019-47985-wBeddows, I., Reddy, A., Kloesges, T., & Rose, L. E. (2017). Population Genomics in Wild Tomatoes—The Interplay of Divergence and Admixture. Genome Biology and Evolution, 9(11), 3023-3038. doi:10.1093/gbe/evx224Blanca, J., Montero-Pau, J., Sauvage, C., Bauchet, G., Illa, E., Díez, M. J., … Cañizares, J. (2015). Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics, 16(1). doi:10.1186/s12864-015-1444-1Caicedo, A. L., & Schaal, B. A. (2004). Population structure and phylogeography of Solanum pimpinellifolium inferred from a nuclear gene. Molecular Ecology, 13(7), 1871-1882. doi:10.1111/j.1365-294x.2004.02191.xCastle, J. C. (2011). SNPs Occur in Regions with Less Genomic Sequence Conservation. PLoS ONE, 6(6), e20660. doi:10.1371/journal.pone.0020660Cericola, F., Portis, E., Toppino, L., Barchi, L., Acciarri, N., Ciriaci, T., … Lanteri, S. (2013). The Population Structure and Diversity of Eggplant from Asia and the Mediterranean Basin. PLoS ONE, 8(9), e73702. doi:10.1371/journal.pone.0073702Chen, K.-Y., Cong, B., Wing, R., Vrebalov, J., & Tanksley, S. D. (2007). Changes in Regulation of a Transcription Factor Lead to Autogamy in Cultivated Tomatoes. Science, 318(5850), 643-645. doi:10.1126/science.1148428Chen, K.-Y., & Tanksley, S. D. (2004). High-Resolution Mapping and Functional Analysis ofse2.1. Genetics, 168(3), 1563-1573. doi:10.1534/genetics.103.022558Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., … DePristo, M. A. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156-2158. doi:10.1093/bioinformatics/btr330Davey, J. W., Hohenlohe, P. A., Etter, P. D., Boone, J. Q., Catchen, J. M., & Blaxter, M. L. (2011). Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics, 12(7), 499-510. doi:10.1038/nrg3012Del Fabbro, C., Scalabrin, S., Morgante, M., & Giorgi, F. M. (2013). An Extensive Evaluation of Read Trimming Effects on Illumina NGS Data Analysis. PLoS ONE, 8(12), e85024. doi:10.1371/journal.pone.0085024DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., … Daly, M. J. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 43(5), 491-498. doi:10.1038/ng.806Dodsworth, S., Chase, M. W., Särkinen, T., Knapp, S., & Leitch, A. R. (2015). Using genomic repeats for phylogenomics: a case study in wild tomatoes (SolanumsectionLycopersicon: Solanaceae). Biological Journal of the Linnean Society, 117(1), 96-105. doi:10.1111/bij.12612Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE, 6(5), e19379. doi:10.1371/journal.pone.0019379Flint-Garcia, S. A. (2013). Genetics and Consequences of Crop Domestication. Journal of Agricultural and Food Chemistry, 61(35), 8267-8276. doi:10.1021/jf305511dGramazio, P., Prohens, J., Borràs, D., Plazas, M., Herraiz, F. J., & Vilanova, S. (2017). Comparison of transcriptome-derived simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers for genetic fingerprinting, diversity evaluation, and establishment of relationships in eggplants. Euphytica, 213(12). doi:10.1007/s10681-017-2057-3Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2017). UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution, 35(2), 518-522. doi:10.1093/molbev/msx281Hoheisel, J. D. (2006). Microarray technology: beyond transcript profiling and genotype analysis. Nature Reviews Genetics, 7(3), 200-210. doi:10.1038/nrg1809Huerta-Cepas, J., Serra, F., & Bork, P. (2016). ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data. Molecular Biology and Evolution, 33(6), 1635-1638. doi:10.1093/molbev/msw046Isshiki, S., Iwata, N., & Khan, M. M. R. (2008). ISSR variations in eggplant (Solanum melongena L.) and related Solanum species. Scientia Horticulturae, 117(3), 186-190. doi:10.1016/j.scienta.2008.04.003Kamenetzky, L., Asís, R., Bassi, S., de Godoy, F., Bermúdez, L., Fernie, A. R., … Carrari, F. (2010). Genomic Analysis of Wild Tomato Introgressions Determining Metabolism- and Yield-Associated Traits. Plant Physiology, 152(4), 1772-1786. doi:10.1104/pp.109.150532Kouassi, B., Prohens, J., Gramazio, P., Kouassi, A. B., Vilanova, S., Galán-Ávila, A., … Plazas, M. (2016). Development of backcross generations and new interspecific hybrid combinations for introgression breeding in eggplant ( Solanum melongena ). Scientia Horticulturae, 213, 199-207. doi:10.1016/j.scienta.2016.10.039Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., … Homer, N. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079. doi:10.1093/bioinformatics/btp352Lin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., … Huang, S. (2014). Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 46(11), 1220-1226. doi:10.1038/ng.3117Lynch, V. J., & Wagner, G. P. (2010). DID EGG-LAYING BOAS BREAK DOLLO’S LAW? PHYLOGENETIC EVIDENCE FOR REVERSAL TO OVIPARITY IN SAND BOAS (ERYX: BOIDAE). Evolution, 64(1), 207-216. doi:10.1111/j.1558-5646.2009.00790.xMammadov, J., Aggarwal, R., Buyyarapu, R., & Kumpatla, S. (2012). SNP Markers and Their Impact on Plant Breeding. International Journal of Plant Genomics, 2012, 1-11. doi:10.1155/2012/728398Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, 17(1), 10. doi:10.14806/ej.17.1.200Mason, A. S., Zhang, J., Tollenaere, R., Vasquez Teuber, P., Dalton-Morgan, J., Hu, L., … Batley, J. (2015). High-throughput genotyping for species identification and diversity assessment in germplasm collections. Molecular Ecology Resources, 15(5), 1091-1101. doi:10.1111/1755-0998.12379Meyer, R. S., Karol, K. G., Little, D. P., Nee, M. H., & Litt, A. (2012). Phylogeographic relationships among Asian eggplants and new perspectives on eggplant domestication. Molecular Phylogenetics and Evolution, 63(3), 685-701. doi:10.1016/j.ympev.2012.02.006Miz, R. B., Mentz, L. A., & Souza-Chies, T. T. (2007). Overview of the phylogenetic relationships of some southern Brazilian species from section Torva and related sections of «spiny Solanum» (Solanum subgenus Leptostemonum, Solanaceae). Genetica, 132(2), 143-158. doi:10.1007/s10709-007-9156-3Nairismägi, M.-L., Tan, J., Lim, J. Q., Nagarajan, S., Ng, C. C. Y., Rajasegaran, V., … Ong, C. K. (2016). JAK-STAT and G-protein-coupled receptor signaling pathways are frequently altered in epitheliotropic intestinal T-cell lymphoma. Leukemia, 30(6), 1311-1319. doi:10.1038/leu.2016.13Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2014). IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution, 32(1), 268-274. doi:10.1093/molbev/msu300Pailles, Y., Ho, S., Pires, I. S., Tester, M., Negrão, S., & Schmöckel, S. M. (2017). Genetic Diversity and Population Structure of Two Tomato Species from the Galapagos Islands. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00138Herraiz, F. J., Blanca, J., Ziarsolo, P., Gramazio, P., Plazas, M., Anderson, G. J., … Vilanova, S. (2016). The first de novo transcriptome of pepino (Solanum muricatum): assembly, comprehensive analysis and comparison with the closely related species S. caripense, potato and tomato. BMC Genomics, 17(1). doi:10.1186/s12864-016-2656-8Plazas, M., Andújar, I., Vilanova, S., Gramazio, P., Herraiz, F. J., & Prohens, J. (2014). Conventional and phenomics characterization provides insight into the diversity and relationships of hypervariable scarlet (Solanum aethiopicum L.) and gboma (S. macrocarpon L.) eggplant complexes. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00318Plazas, M., Vilanova, S., Gramazio, P., Rodríguez-Burruezo, A., Fita, A., Herraiz, F. J., … Prohens, J. (2016). Interspecific Hybridization between Eggplant and Wild Relatives from Different Genepools. Journal of the American Society for Horticultural Science, 141(1), 34-44. doi:10.21273/jashs.141.1.34Poplin, R., Ruano-Rubio, V., DePristo, M. A., Fennell, T. J., Carneiro, M. O., Van der Auwera, G. A., … Banks, E. (2017). Scaling accurate genetic variant discovery to tens of thousands of samples. doi:10.1101/201178Razali, R., Bougouffa, S., Morton, M. J. L., Lightfoot, D. J., Alam, I., Essack, M., … Negrão, S. (2018). The Genome Sequence of the Wild Tomato Solanum pimpinellifolium Provides Insights Into Salinity Tolerance. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01402Robinson, D. F., & Foulds, L. R. (1981). Comparison of phylogenetic trees. Mathematical Biosciences, 53(1-2), 131-147. doi:10.1016/0025-5564(81)90043-2Rodriguez, F., Wu, F., Ané, C., Tanksley, S., & Spooner, D. M. (2009). Do potatoes and tomatoes have a single evolutionary history, and what proportion of the genome supports this history? BMC Evolutionary Biology, 9(1), 191. doi:10.1186/1471-2148-9-191Sakata, Y., & Lester, R. N. (1997). Euphytica, 97(3), 295-301. doi:10.1023/a:1003000612441Sakata, Y., Nishio, T., & Matthews, P. J. (1991). Chloroplast DNA analysis of eggplant (Solanum melongena) and related species for their taxonomic affinity. Euphytica, 55(1), 21-26. doi:10.1007/bf00022555Särkinen, T., Bohs, L., Olmstead, R. G., & Knapp, S. (2013). A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. BMC Evolutionary Biology, 13(1), 214. doi:10.1186/1471-2148-13-214Scaglione, D., Pinosio, S., Marroni, F., Di Centa, E., Fornasiero, A., Magris, G., … Morgante, M. (2019). Single primer enrichment technology as a tool for massive genotyping: a benchmark on black poplar and maize. Annals of Botany, 124(4), 543-551. doi:10.1093/aob/mcz054Scheben, A., Batley, J., & Edwards, D. (2017). Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. Plant Biotechnology Journal, 15(2), 149-161. doi:10.1111/pbi.12645Scolnick, J. A., Dimon, M., Wang, I.-C., Huelga, S. C., & Amorese, D. A. (2015). An Efficient Method for Identifying Gene Fusions by Targeted RNA Sequencing from Fresh Frozen and FFPE Samples. PLOS ONE, 10(7), e0128916. doi:10.1371/journal.pone.0128916Semagn, K., Babu, R., Hearne, S., & Olsen, M. (2013). Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Molecular Breeding, 33(1), 1-14. doi:10.1007/s11032-013-9917-xSim, S.-C., Van Deynze, A., Stoffel, K., Douches, D. S., Zarka, D., Ganal, M. W., … Francis, D. M. (2012). High-Density SNP Genotyping of Tomato (Solanum lycopersicum L.) Reveals Patterns of Genetic Variation Due to Breeding. PLoS ONE, 7(9), e45520. doi:10.1371/journal.pone.0045520Syfert, M. M., Castañeda-Álvarez, N. P., Khoury, C. K., Särkinen, T., Sosa, C. C., Achicanoy, H. A., … Knapp, S. (2016). Crop wild relatives of the brinjal eggplant (Solanum melongena): Poorly represented in genebanks and many species at risk of extinction. American Journal of Botany, 103(4), 635-651. doi:10.3732/ajb.1500539(2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485(7400), 635-641. doi:10.1038/nature11119Thomson, R. C., & Shaffer, H. B. (2010). Sparse Supermatrices for Phylogenetic Inference: Taxonomy, Alignment, Rogue Taxa, and the Phylogeny of Living Turtles. Systematic Biology, 59(1), 42-58. doi:10.1093/sysbio/syp075Tranchida-Lombardo, V., Mercati, F., Avino, M., Punzo, P., Fiore, M. C., Poma, I., … Grillo, S. (2018). Genetic diversity in a collection of Italian long storage tomato landraces as revealed by SNP markers array. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 153(2), 288-297. doi:10.1080/11263504.2018.1478900Vilanova, S., Manzur, J. P., & Prohens, J. (2011). Development and characterization of genomic simple sequence repeat markers in eggplant and their application to the study of diversity and relationships in a collection of different cultivar types and origins. Molecular Breeding, 30(2), 647-660. doi:10.1007/s11032-011-9650-2Vorontsova, M. S., Stern, S., Bohs, L., & Knapp, S. (2013). African spinySolanum(subgenusLeptostemonum, Solanaceae): a thorny phylogenetic tangle. Botanical Journal of the Linnean Society, 173(2), 176-193. doi:10.1111/boj.12053Weese, T. L., & Bohs, L. (2010). Eggplant origins: Out of Africa, into the Orient. TAXON, 59(1), 49-56. doi:10.1002/tax.591006Tan, M. H., Gan, H. M., Schultz, M. B., & Austin, C. M. (2015). MitoPhAST, a new automated mitogenomic phylogeny tool in the post-genomic era with a case study of 89 decapod mitogenomes including eight new freshwater crayfish mitogenomes. Molecular Phylogenetics and Evolution, 85, 180-188. doi:10.1016/j.ympev.2015.02.009Wiens, J. J., & Morrill, M. C. (2011). Missing Data in Phylogenetic Analysis: Reconciling Results from Simulations and Empirical Data. Systematic Biology, 60(5), 719-731. doi:10.1093/sysbio/syr025Williams, C. E., & Clair, D. A. S. (1993). Phenetic relationships and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum. Genome, 36(3), 619-630. doi:10.1139/g93-083Zheng, X., Levine, D., Shen, J., Gogarten, S. M., Laurie, C., & Weir, B. S. (2012). A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics, 28(24), 3326-3328. doi:10.1093/bioinformatics/bts60
    corecore