54 research outputs found

    Covariation between the cranium and the cervical vertebrae in hominids

    Get PDF
    [EN] The analysis of patterns of integration is crucial for the reconstruction and understanding of how morphological changes occur in a taxonomic group throughout evolution. These patterns are relatively constant; however, both patterns and the magnitudes of integration may vary across species. These differences may indicate morphological diversification, in some cases related to functional adaptations to the biomechanics of organisms. In this study, we analyze patterns of integration between two functional and developmental structures, the cranium and the cervical spine in hominids, and we quantify the amount of divergence of each anatomical element through phylogeny. We applied these methods to three-dimensional data from 168 adult hominid individuals, summing a total of more than 1000 cervical vertebrae. We found the atlas (C1) and axis (C2) display the lowest covariation with the cranium in hominids (Homo sapiens, Pan troglodytes, Pan paniscus, Gorilla gorilla, Gorilla beringei, Pongo pygmaeus). H. sapiens show a relatively different pattern of craniocervical correlation compared with chimpanzees and gorillas, especially in variables implicated in maintaining the balance of the head. Finally, the atlas and axis show lower magnitude of shape change during evolution than the rest of the cervical vertebrae, especially those located in the middle of the subaxial cervical spine. Overall, results suggest that differences in the pattern of craniocervical correlation between humans and gorillas and chimpanzees could reflect the postural differences between these groups. Also, the stronger craniocervical integration and larger magnitude of shape change during evolution shown by the middle cervical vertebrae suggests that they have been selected to play an active role in maintaining head balance.We would like to express our gratitude for access and technical help with the collections to Patrice Courtaud (Université de Bordeaux), Jacques Cuisin (MNHN, Paris), Emmanuel Gilissen and Wim Wendelen (Royal Museum for Central Africa, Tervuren), Olivier S. G. Pauwels and Patrick Semal (Royal Belgian Institute of Natural Sciences), Javier Quesada (Nat-Museu de Ciències Naturals, Barcelona), and Inbal Livne (Powell-Cotton Museum, Birchington, UK). This research has also received support from the Spanish Ministry of Science and Innovation through the “María de Maeztu” excellence accreditation (CEX2019-000945- M), FEDER/Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación (project PGC2018-093925-B-C33), Research Group IT1418-19 from the Eusko Jaurlaritza-Gobierno Vasco, AGAUR (Ref. 2017SGR1040) and URV (Ref. 2019PFR-URV-91). A.G.O. was supported by the Ramón y Cajal fellowship (RYC-2017-22558)

    Estudio virtual de un probable meningioma en un cráneo de época romana

    Full text link
    [ES] Las enfermedades han acompañado a las poblaciones humanas desde la prehistoria. Conocer las paleopatologías y sus consecuencias puede ayudar a entender cómo han influido en las formas de vida de las poblaciones del pasado. Los estudios tafonómicos y paleopatológicos son claves para entender el origen de las lesiones; también pueden aportar información sobre las causas de muerte, el comportamiento de las poblaciones analizadas, así como la existencia de conflictos interpersonales o el cuidado de los enfermos. Se obtienen datos sobre la existencia de determinadas enfermedades en el registro arqueológico. Aquí presentamos el análisis de cuatro lesiones encontradas en un cráneo romano de la cueva de Marcenejas, situada en el norte de España. El análisis antropológico de este cráneo ha revelado que corresponde a un individuo masculino adulto. Este trabajo se centra en el diagnóstico diferencial de las lesiones para discernir las etiologías más probables. Se han aplicado las siguientes técnicas: análisis morfológico clásico, análisis tafonómico forense y análisis virtual. La microtomografía computarizada (MicroTC) y la microscopía 3D se han empleado como herramientas esenciales para el análisis virtual del cráneo y sus lesiones. Los resultados obtenidos han revelado la existencia de un tumor y tres traumatismos exocraneales, todos ellos ante mortem. La localización del tumor, así como su morfología junto con otros aspectos apoyan el meningioma como tipo de tumor más probable. Este meningioma representa el primer caso para estas cronologías en la Península Ibérica, donde hay pocos casos documentados. Las tres lesiones traumáticas revelan la existencia de lesiones producidas tanto por objetos contundentes como cortantes, relacionadas con eventos de violencia interpersonal. La aplicación del análisis 3D virtual ha demostrado que es factible identificar tumores en aquellas regiones craneales internas donde la lesión no es visible, aportando nuevos datos comparativos para el registro paleopatológico de poblaciones del pasado.[EN] Diseases have accompanied human populations since prehistoric times. Knowing the paleopathologies and their consequences derived from them can help us to understand their impact and how have been decisive in our ancestors' ways of life. Taphonomic and paleopathological studies are key to understanding how injuries occurred; they can provide information on causes of death, analyzed populations behaviour, such as the existence of interpersonal conflicts or how they took the care of the sick. Those studies also confirm the existence of certain diseases, mentioned in the archaeological record. This paper explains the analysis of four lesions found in a Roman-era cranium from Sima de Marcenejas, located in Northern Spain. An anthropological analysis of this cranium has revealed that it corresponds to an adult male individual. This work focuses on the differential diagnosis of the lesions, to be able to discern the most likely aetiologies. The following techniques have been implemented: classical morphological analysis, forensic taphonomic analysis and virtual analysis. MicroCT and 3D microscopy have been used as essential tools for the virtual analysis of the cranium and its lesions. The results obtained revealed the existence of a tumour and three exocranial traumas, all of them antemortem. The location of the tumour, as well as its morphology together with other aspects, support the meningioma as the most probable tumour type. This possible ancient meningioma represents the first case for these chronologies on the Iberian Peninsula, where there are few documented cases. The three traumatic lesions reveal the existence of injuries produced by both, blunt and sharp objects, related to events of interpersonal violence. By applying virtual 3D analyses, the researchers have demonstrated that it is viable to identify tumours in those internal cranial regions, where the lesion is not visible, thus providing new comparative data for the paleopathological record of past populations. Highlights: Meningiomas are rare in the archaeological record which complicates tracing themin ancient human populations. The use of computerized microtomography (MicroCT) and virtual 3D models makes it possible to identify tumoursin those internal cranial regions where the lesions are not visible. Paleopathological analysis of a Roman cranium has revealed, in addition to cranial trauma, a new possible case of meningioma.Rodríguez-Iglesias, D.; Pantoja-Pérez, A.; Fernández-Colón, P.; Pablos, A.; Alcaraz-Castaño, M.; Sala, N. (2023). Virtual assessment of a possible meningioma in a Roman-period cranium. Virtual Archaeology Review. 14(29):14-25. https://doi.org/10.4995/var.2023.1968014251429Arbizu, J., Domínguez, P. D., Diez-Valle, R., Vigil, C., García-Eulate, R., Zubieta, J. L., & Richter, J. A. (2011). Neuroimagen de los tumores cerebrales. Revista Española de Medicina Nuclear, 30(1), 47–65. https://doi.org/10.1016/j.remn.2010.11.001Berger, T. D., & Trinkaus, E. (1995). Patterns of trauma among the Neandertals. Journal of Archaeological Science, 22, 841–852. https://doi.org/10.1016/0305-4403(95)90013-6.Bourekas, E. C., Cohen, M. L., Kamen, C. S., Tarr, R. W., Lanzieri, C. F., & Lewin, J. S. (1996). Malignant Hemangioendothelioma (Angiosarcoma) of the Skull: Plain Film, CT, and MR Appearance. American Journal of Neuroradiology, 17, 1946–1948.Brothwell, M., & Brothwell, D. (2016). Evidence for ancient meningiomas and a probable case from Medieval Tarbat, Scotland. International Journal of Paleopathology, 13, 65–69. https://doi.org/10.1016/j.ijpp.2016.01.004Brotwell, D. (1965). Digging up bones. The excavation, treatment and study of human skeletal remains. New York: Cornelll University Press.Campillo, D. (1991). The possibility of diagnosing meningiomas in palaeopathology. International Journal of Osteoarchaeology, 1(3–4), 225–230. https://doi.org/10.1002/oa.1390010315Campillo, D. (1993). Paleopatología. Los primeros vestigios de la enfermedad. Barcelona: Fundación Uriach.Casas Parera, I., Báez, A., Banfi, N., Blumenkrantz, Y., Halfon, M. J., Barros, M., … Lozano, C. (2016). Meningiomas en neurooncología. Neurologia Argentina, 8(3), 210–226. https://doi.org/10.1073/pnas.117113108Cook, D. C., & Danforth, M. E. (2022). Meningiomas in ancient human populations. Cancers, 14(4). https://doi.org/10.3390/cancers14041058De Salvo, S., Pavone, V., Coco, S., Dell’agli, E., Blatti, C., & Testa, G. (2022). Benign bone tumors: An overview of what we know today. Journal of Clinical Medicine, 11(3). https://doi.org/10.3390/jcm11030699Del Cura Allende, G., Bermejo Espinosa, N., Loizaga Ingunza, E., Angulo Gorriño, M., Arechaga Vidales, L., & Olabarria Vicente, I. (2018). Lesiones de calota en adultos: Diagnóstico por imagen. 33 Congreso Nacional Sociedad Española de Radiografía Médica (SERAM) (pp. 1-21). Bilbao, España.Erfan, M., El-Sawaf, A., Al-Tohamy Soliman, M., Sarry El-Din, A., Kandeel, W. A., Abd El-Shafy El-Banna, R., & Azab, A. (2009). Cranial trauma in ancient Egyptians from the Bahriyah oasis, Greco-Roman period. Research Journal of Medicine and Medical Sciences, 4(1), 78–84.Fenton, W. T., deJong, L. J., & Haut, C. R. (2003). Punched with a fist: the etiology of a fatal depressed cranial fracture. Journal Forensic Science, 48(2), 1–5.Garvin, H. M., Sholts, S. B., & Mosca, L. A. (2014). Sexual dimorphism in human cranial trait scores: Effects of population, age, and body size. American Journal of Physical Anthropology, 154(2), 259–269. https://doi.org/10.1002/ajpa.22502Gomez, C. K., Schiffman, S. R., & Bhatt, A. A. (2018). Radiological review of skull lesions. Insights into Imaging, 9(5), 857–882. https://doi.org/10.1007/s13244-018-0643-0Gracia-Téllez, A., Arsuaga, J. L., Martínez, I., Martín-Francés, L., Martinón-Torres, M., Bermúdez de Castro, J. M., … Lira, J. (2013). Orofacial pathology in Homo heidelbergensis: The case of Skull 5 from the Sima de los Huesos site (Atapuerca, Spain). Quaternary International, 295, 83–93. https://doi.org/10.1016/j.quaint.2012.02.005Guyomarc’H, P., Campagna-Vaillancourt, M., Kremer, C., & Sauvageau, A. (2010). Discrimination of falls and blows in blunt head trauma: A multi-criteria approach. Journal of Forensic Sciences, 55(2), 423–427. https://doi.org/10.1111/j.1556-4029.2009.01310.xHernández Varela, A., Basulto Vega, S., Nápoles Domínguez, M., Betancourt Mosquera, G., Roura León, H., Da Conceiçao Almeida, F., & Cardoso Núñez, O. (2006). Metástasis craneales sobre los senos durales de la convexidad. Informe de nueve casos. Revista Mexicana de Neurocirugía, 7(3), 240–245.Ichimura, S., Takahara, K., & Fujii, K. (2019). Fibrous meningioma with skull invasion. Journal of Neurosciences in Rural Practice, 10(4), 707–710. https://doi.org/10.1055/s-0039-3399600Kakkar, A., Nambirajan, A., Suri, V., Sarkar, C., Kale, S. S., Singh, M., & Sharma, M. C. (2016). Primary bone tumors of the skull: Spectrum of 125 cases, with review of literature. Journal of Neurological Surgery, Part B: Skull Base, 77(4), 319–325. https://doi.org/10.1055/s-0035-1570347Kanazawa, R., Yoshida, D., Takahashi, H., Matsumoto, K., & Teramoto, A. (2003). Osteosarcoma arising from the skull-case report. Neurologia Medico Chirug (Tokyo), 43, 88–91. https://doi.org/10.2176/nmc.43.88Kang, S. H., Park, S. W., Kwon, K. Y., & Hong, W. J. (2010). A solitary skull lesion of syphilitic osteomyelitis. Journal of Korean Neurosurgical Society, 48(1), 85–87. https://doi.org/10.3340/jkns.2010.48.1.85Kimmerle, E. H., & Baraybar, J. P. (2008). Skeletal Trauma. Identification of Injuries Resulting from Human Rights Abuse and Armed Conflict. Boca Raton: CRC Press.Leyva-Pérez, I., Guerrero-Avendaño, G., & Ramón Hernández-Paz, J. (2013). Meningiomas: apariencia por tomografía y por resonancia magnética. Localizaciones más frecuentes. Anales de Radiología México, 1, 36–44.Lin, Y. C., Commins, D. L., Fedenko, A. N., & Pinsky, G. S. (2005). A rare case of periosteal osteoblastoma located in the frontal cranial bone. Archives of Pathology & Laboratory Medicine, 129(6), 787–789. https://doi.org/10.5858/2005-129-787-ARCOPOLovejoy, C. O. (1985). Dental Wear in the Libben Population: Its Functional Pattern and Role in the Determination of Adult Skeletal. Age at Death. American Journal of Physical Anthropology, 68, 47–56. https://doi.org/10.1002/ajpa.1330680105Martin-Francés, L., Martinon-Torres, M., Gracia-Téllez, A., & Bermúdez de Castro, J. M. (2015). Evidence of stress fracture in a Homo antecessor metatarsal from Gran Dolina Site (Atapuerca, Spain). International Journal of Osteoarchaeology, 25(4), 564–573. https://doi.org/10.1002/oa.2310Martín-Francés, L., Martinón-Torres, M., Gracia-Téllez, A., & Bermúdez de Castro, J. M. (2016). Evidence of trauma in a ca. 1-million-year-old patella of Homo antecessor, Gran Dolina-Atapuerca (Spain). Comptes Rendus - Palevol, 15(8), 1011–1016. https://doi.org/10.1016/j.crpv.2016.04.014Meindl, R. S., & Lovejoy, C. O. (1985). Ectocranial Suture Closure: A revised method for the determination of skeletal age at death based on the lateral-anterior sutures. American Journal of Physical Anthropology, 68, 57–66. https://doi.org/10.1002/ajpa.1330680106Mena, H., L. Ribas, J., H. Pezeshkpour, G., N. Cowan, D., & E. Parisi, J. (1991). Hemangiopericytoma of the Central Nervous System: A Review of 94 Cases. Human Pathology, 22(1), 84–91. https://doi.org/10.1016/0046-8177(91)90067-YMerczi, M., Marcsik, A., Bernert, Z., Józsa, L., Buczkó, K., Lassányi, G., … Molnár, E. (2014). Skeletal metastatic carcinomas from the Roman period (1st to 5th Century AD) in Hungary. Pathobiology, 81(2), 100–111. https://doi.org/10.1159/000357435Miles, A.-E.-W. (1963). Dentition in the estimating of age. Journal of Dental Research, 42, 255–263. https://doi.org/10.1177/00220345630420012701Moreno-Ibáñez, M. Á., Saladié, P., Morales, J. I., Cebrià, A., & Fullola, J. M. (2021). Was it an axe or an adze? A cranial trauma case study from the Late Neolithic – Chalcolithic site of Cova Foradada (Calafell, Spain). International Journal of Paleopathology, 32, 23–30. https://doi.org/10.1016/j.ijpp.2020.11.002Navas-García, M., Pulido-Rivas, P., Pascual-Garvi, J. M., Manzanares-Soler, R., & Sola, R. G. (2011). Quiste óseo aneurismático frontal. Caso clínico y revisión de la bibliografía. Revista de Neurología, 52(6), 349–354.Ortner, D. J., & Putschar, W. G. J. (1981). Identification of Pathological Conditions in Human Skeletal. Washington: Smithsonian Institution Press.Politi, M., Romeike, B., & Reith, W. (2005). Intraosseous hemangioma of the skull with dural tail sign: radiologic features with pathologic correlation. American Journal of Neuroradiology, 26(8), 2049–2052.Rutkowski, M. J., Sughrue, M. E., Kane, A. J., Aranda, D., Mills, S. A., Barani, I. J., & Parsa, A. T. (2010). Predictors of mortality following treatment of intracranial hemangiopericytoma. Journal of Neurosurgery, 113(2), 333–339. https://doi.org/10.3171/2010.3.JNS091882Sala, N., Arsuaga, J. L., Pantoja-Pérez, A., Pablos, A., Martínez, I., Quam, R. M., … Carbonell, E. (2015). Lethal interpersonal violence in the Middle Pleistocene. PLoS ONE, 10(5). https://doi.org/10.1371/journal.pone.0126589Sala, N., Pantoja-Pérez, A., Arsuaga, J. L., Pablos, A., & Martínez, I. (2016). The Sima de los Huesos Crania: Analysis of the cranial breakage patterns. Journal of Archaeological Science, 72, 25–43. https://doi.org/10.1016/j.jas.2016.06.001Spekker, O., Váradi, O. A., Szekeres, A., Jäger, H. Y., Zink, A., Berner, M., … Tihanyi, B. (2022). A rare case of calvarial tuberculosis from the Avar Age (8th century CE) cemetery of Kaba–Bitózug (Hajdú-Bihar County, Hungary) – Pathogenesis and differential diagnostic aspects. Tuberculosis, 135. https://doi.org/10.1016/j.tube.2022.102226Stubenvoll, R. W., & Hunsaker, D. H. (1987). Eosinophilic granuloma of frontal bone. Military Medicine, 152(6), 327–329.Walker, P. L. (2008). Sexing skulls using discriminant function analysis of visually assessed traits. American Journal of Physical Anthropology, 136(1), 39–50. https://doi.org/10.1002/ajpa.20776Walker, P. L., Bathurst, R. R., Richman, R., Gjerdrum, T., & Andrushko, V. A. (2009). The causes of porotic hyperostosis and cribra orbitalia: A reappraisal of the iron-deficiency-anemia hypothesis. American Journal of Physical Anthropology, 139(2), 109–125. https://doi.org/10.1002/ajpa.21031Watts, J., Box, G., Galvin, A., Brotchie, P., Trost, N., & Sutherland, T. (2014). Magnetic resonance imaging of meningiomas: A pictorial review. Insights into Imaging, 5(1), 113–122. https://doi.org/10.1007/s13244-013-0302-4Wu, X. J., Schepartz, L. A., Liu, W., & Trinkaus, E. (2011). Antemortem trauma and survival in the late Middle Pleistocene human cranium from Maba, South China. Proceedings of the National Academy of Sciences of the United States of America, 108(49), 19558–19562. https://doi.org/10.1073/pnas.1117113108Zoubov, A. (1968). Otonlogía. Metódica de las investigaciones antropológicas. Moscú: Nauka

    The Neandertal nature of the Atapuerca Sima de los Huesos mandibles

    Get PDF
    The recovery of additional mandibular fossils from the Atapuerca Sima de los Huesos (SH) site provides new insights into the evolutionary significance of this sample. In particular, morphological descriptions of the new adult specimens are provided, along with standardized metric data and phylogenetically relevant morphological features for the expanded adult sample. The new and more complete specimens extend the known range of variation in the Atapuerca (SH) mandibles in some metric and morphological details. In other aspects, the addition of new specimens has made it possible to confirm previous observations based on more limited evidence. Pairwise comparisons of individual metric variables revealed the only significant difference between the Atapuerca (SH) hominins and Neandertals was a more vertical symphysis in the latter. Similarly, principal components analysis of size-adjusted variables showed a strong similarity between the Atapuerca (SH) hominins and Neandertals. Morphologically, the Atapuerca (SH) mandibles show nearly the full complement of Neandertal-derived features. Nevertheless, the Neandertals differ from the Atapuerca (SH) mandibles in showing a high frequency of the H/O mandibular foramen, a truncated, thinned and inverted gonial margin, a high placement of the mylohyoid line at the level of the M3, a more vertical symphysis and somewhat more pronounced expression of the chin structures. Size-related morphological variation in the SH hominins includes larger retromolar spaces, more posterior placement of the lateral corpus structures, and stronger markings associated with the muscles of mastication in larger specimens. However, phylogenetically relevant features in the SH sample are fairly stable and do not vary with the overall size of the mandible. Direct comparison of the enlarged mandibular sample from Atapuerca (SH) with the Mauer mandible, the type specimen of H. heidelbergensis, reveals important differences from the SH hominins, and there is no morphological counterpart of Mauer within the SH sample, suggesting the SH fossils should not be assigned to this taxon. The Atapuerca (SH) mandibles show a greater number of derived Neandertal features, particularly those related to midfacial prognathism and in the configuration of the superior ramus, than other European middle Pleistocene specimens. This suggests that more than one evolutionary lineage co-existed in the middle Pleistocene, and, broadly speaking, it appears possible to separate the European middle Pleistocene mandibular remains into two distinct groupings. One group shows a suite of derived Neandertal features and includes specimens from the sites of Atapuerca (SH), Payre, l'Aubesier and Ehringsdorf. The other group includes specimens that generally lack derived Neandertal features and includes the mandibles from the sites of Mauer, Mala Balanica, Montmaurin and (probably) Visogliano. The two published Arago mandibles differ strongly from one another, with Arago 2 probably belonging to this former group, and Neandertal affinities being more difficult to identify in Arago 13. Outside of the SH sample, derived Neandertal features in the mandible only become more common during the second half of the middle Pleistocene. Acceptance of a cladogenetic pattern of evolution during the European middle Pleistocene has the potential to reconcile the predictions of the accretion model and the two phases model for the appearance of Neandertal morphology. The precise taxonomic classification of the SH hominins must contemplate features from the dentition, cranium, mandible and postcranial skeleton, all of which are preserved at the SH site. Nevertheless, the origin of the Neandertal clade may be tied to a speciation event reflected in the appearance of a suite of derived Neandertal features in the face, dentition and mandible, all of which are present in the Atapuerca (SH) hominins. This same suite of features also provides a useful anatomical basis to include other European middle Pleistocene mandibles and crania within the Neandertal clade.Depto. de Geodinámica, Estratigrafía y PaleontologíaFac. de Ciencias GeológicasTRUEBinghamton UniversityMinisterio de Ciencia e Innovación y UniversidadesJunta de Castilla y Leónpu

    Cueva de los Torrejones revisited. New insights on the paleoecology of inland Iberia during the Late Pleistocene

    Get PDF
    34 p.The interior of the Iberian Peninsula has orographic conditions that make this territory especially vulnerable to Quaternary climate oscillations and which actually could have made it decisive for Paleolithic human populations at critical points. For this reason, the information provided by paleontological sites is important for reconstructing climatic and environmental conditions during the Late Pleistocene and understanding how they influenced the species that inhabited them, including humans. Nevertheless, the archaeo-paleontological record is scarce in central Iberia for the Late Pleistocene. A central Iberian site that is key to addressing this issue is Cueva de los Torrejones, which was discovered and excavated during the nineties. Clues indicating the presence of Neandertal populations near the cave site were announced during prior field excavations, including Neandertal remains, Middle Paleolithic artifacts, and evidence of anthropic exploitation of faunal resources at the site. Here we report the new results from the recent excavations and research, including detailed studies on stratigraphy, micromorphology, macro and microvertebrate paleontology, physical and molecular anthropology, taphonomy and zooarchaeology, and analysis of lithic and pottery remains. Our research has led to the detection of three Prehistoric chronologies recorded at the site. The oldest episode corresponds to between MIS 5 and MIS 4 in which the cave was used by carnivores. The second episode is represented by a faunal association dated to 30.0 ka cal BP and is indicative of cooler and more arid environmental conditions and, therefore, compatible with the worsening climate detected previously for MIS 3 in this area. The last episode corresponds to the Chalcolithic, directly dated to ~5000 cal BP in which humans used the cavity for funerary purposes. The DNA analysis of the human remain was assigned to mtDNA haplogroup K, which was originated in the Near East and reached western Europe through the Neolithic expansion. Human occupation during the Paleolithic has been ruled out, including Paleolithic human remains and any kind of anthropic intervention on the Hermann’s tortoise and leopard as was previously proposed at the site.European Research CouncilJunta de Comunidades de Castilla la ManchaMinisterio de Ciencia e InnovaciónCentro Nacional de Investigación sobre la Evolución Humana (CENIEH

    CD38 Deficiency Ameliorates Chronic Graft-Versus-Host Disease Murine Lupus via a B-Cell-Dependent Mechanism

    Get PDF
    © 2021 Martínez-Blanco, Domínguez-Pantoja, Botía-Sánchez, Pérez-Cabrera, Bello-Iglesias, Carrillo-Rodríguez, Martin-Morales, Lario-Simón, Pérez-Sánchez-Cañete, Montosa-Hidalgo, Guerrero-Fernández, Longobardo-Polanco, Redondo-Sánchez, Cornet-Gomez, Torres-Sáez, Fernández-Ibáñez, Terrón-Camero, Andrés-León, O’Valle, Merino, Zubiaur and Sancho.The absence of the mouse cell surface receptor CD38 in Cd38−/− mice suggests that this receptor acts as a positive regulator of inflammatory and autoimmune responses. Here, we report that, in the context of the chronic graft-versus-host disease (cGVHD) lupus inducible model, the transfer of B6.C-H2bm12/KhEg(bm12) spleen cells into co-isogenic Cd38−/− B6 mice causes milder lupus-like autoimmunity with lower levels of anti-ssDNA autoantibodies than the transfer of bm12 spleen cells into WT B6 mice. In addition, significantly lower percentages of Tfh cells, as well as GC B cells, plasma cells, and T-bet+CD11chi B cells, were observed in Cd38−/− mice than in WT mice, while the expansion of Treg cells and Tfr cells was normal, suggesting that the ability of Cd38−/− B cells to respond to allogeneic help from bm12 CD4+ T cells is greatly diminished. The frequencies of T-bet+CD11chi B cells, which are considered the precursors of the autoantibody-secreting cells, correlate with anti-ssDNA autoantibody serum levels, IL-27, and sCD40L. Proteomics profiling of the spleens from WT cGVHD mice reflects a STAT1-driven type I IFN signature, which is absent in Cd38−/− cGVHD mice. Kidney, spleen, and liver inflammation was mild and resolved faster in Cd38−/− cGVHD mice than in WT cGVHD mice. We conclude that CD38 in B cells functions as a modulator receptor that controls autoimmune responses.S and MZ received financial support through “Proyecto del Plan Estatal”: SAF2017–89801-R. The IPBLN-CSIC Proteomics Unit belonged to ProteoRed-ISCIII (PRB2; PRB3) and was supported by grants PT13/0001/0011 (IPBLN-CSIC) and PT17/0019/0010 (CIB-CSIC; IPBLN-CSIC). RM: Project: SAF2017-82905-R. FO'V: Cátedra MIS IMPLANT-UGR. The stay of AC-G in Sancho’s lab was supported by a fellowship-contract JAE-Intro (CSIC). The stay of MD-P in Sancho’s lab was supported by a 1-year post-doctoral fellowship (Reference No. 502492) from the Consejo Nacional de Ciencia y Tecnología (CONACYT) of México. EA-L was recipient of a postdoctoral fellowship from the regional Andalusian Government

    Palaeontological analisis of the Late Pleistocene Site of Cova Foradada (Xábia, Alicante, Spain)

    Get PDF
    En este trabajo se presenta el estudio de la estratigrafía, secuencia polínica, taxonomía y tafonomía del yacimiento del Pleistoceno superior de Cova Foradada, Xábia (Alicante). Las especies de macromamíferos representadas en el yacimiento son, dentro de los carnívoros, Panthera pardus (Linnaeus, 1978), Lynx pardinus (Temminck, 1827) y Felis silvestris (Schreber, 1777); del grupo de los artiodáctilos, Cervus elaphus (Linnaeus, 1978), Capra pyrenaica (Schinz, 1838), Bos primigenius (Bojanus, 1827) y Sus scrofa (Linnaeus, 1978). Se han identificado dos especies de perisodáctilos Equus ferus (Boddaert , 1785) y Equus hydruntinus (Regalia, 1904). En todos los niveles del yacimiento se observa un claro predominio de los ungulados de talla media (Cervus elaphus) y talla pequeña (Capra pyrenaica). Los patrones de fracturación indican actividad humana y evidencian el aprovechamiento máximo de los recursos cárnicos. Se han encontrado marcas antrópicas en restos de lince, gato montés y leopardo. El análisis polínico pone de manifiesto el dominio de un paisaje muy abierto y empobrecido desde el punto de vista taxonómico.This study presents aspects related to the stratigraphy, pollen sequence, taxonomy and taphonomy of the Late Pleistocene site of Cova Foradada in Xábia (Alicante, Spain). The fossil material comes from Sector I of the site that comprises eight stratigraphic levels. Some of these levels have been previously dated (Casabó, 2001): 33,900 ± 310 B.P. for Level VII; 29,940 ± 150 B.P. for Level VI; 27,170 ± 150 B.P. and 29,420 ± 190 B.P. for Level V; and 6,130 ± 140 B.P. for Level III. The total number of identifiable remains represents a very low percentage of the total remains, mainly due to the high degree of fragmentation. The macrovertebrate fossils found are: Panthera pardus (Linnaeus, 1978), Lynx pardinus (Temminck, 1827) and Felis silvestris (Schreber, 1777) among the Carnivora; Cervus elaphus (Linnaeus, 1978), Capra pyrenaica (Schinz, 1838), Bos primigenius (Bojanus, 1827) and Sus scrofa (Linnaeus, 1978) among the Artiodactyla ; and Equus ferus (Boddaert , 1785) and Equus hydruntinus (Regalia, 1904) among the Perisodactyla. Mid- and small-sized ungulates are clearly predominant along the whole sequence, such as Cervus elaphus for the former, and Capra pyrenaica for the latter. The taphonomical analysis allows to discard carnivore activity as the accumulation agent. Signs of carnivore activity are scarce, and they are only present in Level V. Fracture pattern in the bones show human activity as the main agent, characterized by the maximum exploitation of meat resources. Anthropic marks have been found in lynx, wild cat and leopard remains. The patterns of the cuts on these remains are typical of the exploitation of both the flesh and the fleece of these animals. Regarding the paleoenvironmental aspects, the pollen data show predominance of an open environment, depleted from the taxonomical point of view. The detailed pollen analysis allows us to distinguish three levels: the base level shows a more abundant forest cover with Pinus and Juniperus as predominant taxa; the middle level shows signs of a more extreme climate period; and the uppermost level shows a phase of recovering of the flora, with a reduced forest and a varied herbaceous courtship (Apiaceae, Poaceae and Fabaceae).Depto. de Geodinámica, Estratigrafía y PaleontologíaFac. de Ciencias GeológicasTRUEpu

    Estudiantes Facultad de Arquitectura: una visión de futuro

    Get PDF
    IlustracionesEste volumen está constituido por una serie de capítulos en los que se presentan resultados de trabajos y reflexiones que surgieron de actividades de estudiantes de los diversos programas de la Facultad de Arquitectura. Sus visiones, frescas y esperanzadoras, alimentan visiones optimistas, pero responsables, sobre cómo cada cual está comprometido en lograr un mundo mejor. De esta manera, el lector encontrará en este libro motivos suficientes para sentir que esta próxima generación de profesionales está lista y dispuesta a asumir los retos que les competen desde ahor

    Ecología y sostenibilidad en la Antigüedad y la Edad Media: arte, género y ODS

    Get PDF
    En el presente curso 2022/2023 se ha puesto en marcha la continuación del proyecto INNOVA-Docencia nº 129 con un planteamiento interfacultativo, que ha seguido contando con la participación de PDI de las facultades de Geografía e Historia y Comercio y Turismo de la Universidad Complutense de Madrid, a las que se ha sumado en esta ocasión la Facultad de Educación, de esta misma universidad; e interdepartamental (Historia del Arte y Departamento de Didáctica de las Ciencias Experimentales, Sociales y Matemáticas. UD de Didácticas de las CCSS: Historia del Arte). Las principales líneas temáticas desarrolladas en el marco de las clases prácticas impartidas en el curso 2022/2023 por los miembros PDI del proyecto han supuesto la continuación de las ya iniciadas en el curso 2021/2022.Depto. de Historia del ArteFac. de Geografía e HistoriaFALSEsubmitte
    corecore