377 research outputs found

    Mid-infrared Imaging of a Circumstellar Disk Around HR 4796: Mapping the Debris of Planetary Formation

    Get PDF
    We report the discovery of a circumstellar disk around the young A0 star, HR 4796, in thermal infrared imaging carried out at the W.M. Keck Observatory. By fitting a model of the emission from a flat dusty disk to an image at lambda=20.8 microns, we derive a disk inclination, i = 72 +6/-9 deg from face on, with the long axis of emission at PA 28 +/-6 deg. The intensity of emission does not decrease with radius as expected for circumstellar disks but increases outward from the star, peaking near both ends of the elongated structure. We simulate this appearance by varying the inner radius in our model and find an inner hole in the disk with radius R_in = 55+/-15 AU. This value corresponds to the radial distance of our own Kuiper belt and may suggest a source of dust in the collision of cometesimals. By contrast with the appearance at 20.8 microns, excess emission at lambda = 12.5 microns is faint and concentrated at the stellar position. Similar emission is also detected at 20.8 microns in residual subtraction of the best-fit model from the image. The intensity and ratio of flux densities at the two wavelengths could be accounted for by a tenuous dust component that is confined within a few AU of the star with mean temperature of a few hundred degrees K, similar to that of zodiacal dust in our own solar system. The morphology of dust emission from HR 4796 (age 10 Myr) suggests that its disk is in a transitional planet-forming stage, between that of massive gaseous proto-stellar disks and more tenuous debris disks such as the one detected around Vega.Comment: 9 pages, 4 figures as LaTex manuscript and postscript files in gzipped tar file. Accepted for publication in Astrophysical Journal Letters. http://upenn5.hep.upenn.edu/~davidk/hr4796.htm

    The Inner Rings of Beta Pictoris

    Get PDF
    We present Keck images of the dust disk around Beta Pictoris at 17.9 microns that reveal new structure in its morphology. Within 1" (19 AU) of the star, the long axis of the dust emission is rotated by more than 10 degrees with respect to that of the overall disk. This angular offset is more pronounced than the warp detected at 3.5" by HST, and in the opposite direction. By contrast, the long axis of the emission contours at ~ 1.5" from the star is aligned with the HST warp. Emission peaks between 1.5" and 4" from the star hint at the presence of rings similar to those observed in the outer disk at ~ 25" with HST/STIS. A deconvolved image strongly suggests that the newly detected features arise from a system of four non-coplanar rings. Bayesian estimates based on the primary image lead to ring radii of 14+/-1 AU, 28+/-3 AU, 52+/-2 AU and 82+/-2 AU, with orbital inclinations that alternate in orientation relative to the overall disk and decrease in magnitude with increasing radius. We believe these new results make a strong case for the existence of a nascent planetary system around Beta Pic.Comment: 5 pages, 2 figures, PDF format. Published in ApJL, December 20,200

    Widespread atomic gas emission reveals the rotation of the beta Pictoris disk

    Full text link
    We present high resolution Na I D spectroscopy of the beta Pic disk, and the resonantly scattered sodium emission can be traced from less than 30 AU to at least 140 AU from the central star. This atomic gas is co-existent with the dust particles, suggestive of a common origin or source. The disk rotates towards us in the south-west and away from us in the north-east. The velocity pattern of the gas finally provides direct evidence that the faint linear feature seen in images of the star is a circumstellar disk in Keplerian rotation. From modelling the spatial distribution of the Na I line profiles we determine the effective dynamical mass to be 1.40 +/- 0.05 M_sun, which is smaller than the stellar mass, 1.75 M_sun. We ascribe this difference to the gravity opposing radiation pressure in the Na I lines. We argue that this is consistent with the fact that Na is nearly completely ionised throughout the disk (Na I/Na < 10^-4). The total column density of sodium gas is N(Na) = 10^15 cm^-2.Comment: 9 pages, including 6 figs (fig.1 in colour). Accepted by ApJ

    Metagenomic analysis of the turkey gut RNA virus community

    Get PDF
    Viral enteric disease is an ongoing economic burden to poultry producers worldwide, and despite considerable research, no single virus has emerged as a likely causative agent and target for prevention and control efforts. Historically, electron microscopy has been used to identify suspect viruses, with many small, round viruses eluding classification based solely on morphology. National and regional surveys using molecular diagnostics have revealed that suspect viruses continuously circulate in United States poultry, with many viruses appearing concomitantly and in healthy birds. High-throughput nucleic acid pyrosequencing is a powerful diagnostic technology capable of determining the full genomic repertoire present in a complex environmental sample. We utilized the Roche/454 Life Sciences GS-FLX platform to compile an RNA virus metagenome from turkey flocks experiencing enteric disease. This approach yielded numerous sequences homologous to viruses in the BLAST nr protein database, many of which have not been described in turkeys. Our analysis of this turkey gut RNA metagenome focuses in particular on the turkey-origin members of the Picornavirales, the Caliciviridae, and the turkey Picobirnaviruses

    Three years of harvest with the vector vortex coronagraph in the thermal infrared

    Full text link
    For several years, we have been developing vortex phase masks based on sub-wavelength gratings, known as Annular Groove Phase Masks. Etched onto diamond substrates, these AGPMs are currently designed to be used in the thermal infrared (ranging from 3 to 13 {\mu}m). Our AGPMs were first installed on VLT/NACO and VLT/VISIR in 2012, followed by LBT/LMIRCam in 2013 and Keck/NIRC2 in 2015. In this paper, we review the development, commissioning, on-sky performance, and early scientific results of these new coronagraphic modes and report on the lessons learned. We conclude with perspectives for future developments and applications.Comment: To appear in SPIE proceedings vol. 990

    Detection of cool dust around the G2V star HD 107146

    Get PDF
    We report the detection of dust emission at sub-millimeter wavelengths from HD 107146, a G2V star with an age estimated to lie between 80 and 200 Myr. The emission is resolved at 450um with a size 300 AU x 210 AU. A fit to the spectral energy distribution gives a dust temperature of 51 K and dust mass of 0.10 Earth masses. No excess emission above the photosphere was detected at 18um showing that there is very little warm dust and implying the presence of a large inner hole, at least 31 AU (~ 1'') in radius, around the star. The properties of this star-disk system are compared with similar observations of other systems. We also discuss prospects for future observations that may be able to determine whether the inner hole is maintained by the dynamical effect of an unseen orbiting companion.Comment: accepted by the Astrophysical Journa

    Warm molecular gas and kinematics in the disc around HD 100546

    Full text link
    The disc around the Herbig Ae/Be star HD 100546 is one of the most extensively studied discs in the southern sky. Although there is a wealth of information about its dust content and composition, not much is known about its gas and large scale kinematics. We detect and study the molecular gas in the disc at spatial resolution from 7.7" to 18.9" using the APEX telescope. The lines 12CO J=7-6, J=6-5, J=3-2, 13CO J=3-2 and [C I] 3P2-3P1 are observed, diagnostic of disc temperature, size, chemistry, and kinematics. We use parametric disc models that reproduce the low-J 12CO emission from Herbig~Ae stars and vary the basic disc parameters - temperature, mass and size. Using the molecular excitation and radiative transfer code RATRAN we fit the observed spectral line profiles. Our observations are consistent with more than 0.001 Msun of molecular gas in a disc of approximately 400 AU radius in Keplerian rotation around a 2.5 Msun star, seen at an inclination of 50 degrees. The detected 12CO lines are dominated by gas at 30-70~K. The non-detection of the [C I] line indicates excess ultraviolet emission above that of a B9 type model stellar atmosphere. Asymmetry in the 12CO line emission suggests that one side of the outer disc is colder by 10-20~K than the other, possibly due to a shadow by a warped geometry of the inner disc. Pointing offsets, foreground cloud absorption and asymmetry in the disc extent are excluded scenarios. Efficient heating of the outer disc ensures that low- and high-J 12CO lines are dominated by the outermost disc regions, indicating a 400 AU radius. The 12CO J=6--5 line arises from a disc layer higher above disc midplane, and warmer by 15-20~K than the layer emitting the J=3--2 line. The existing models of discs around Herbig Ae stars, assuming a B9.5 type model stellar atmosphere overproduce the [CI] 3P2--3P1 line intensity from HD 100546 by an order of magnitude.Comment: 9pages, 3figures, Accepted for publication in Astronomy & Astrophysic

    Stellar Encounters with the Beta Pictoris Planetesimal System

    Full text link
    We use data from the Hipparcos Catalog and the Barbier-Brossat & Figon (2000) catalog of stellar radial velocities to test the hypothesis that the Beta Pic planetesimal disk was disrupted by a close stellar encounter. We trace the space motions of 21,497 stars and discover 18 that have passed within 5 pc of Beta Pic in the past 1 Myr. Beta Pic's closest encounter is with the K2III star HIP 27628 (0.6 pc), but dynamically the most important encounter is with the F7V star HIP 23693 (0.9 pc). We calculate the velocity and eccentricity changes induced by the 18 perturbations and conclude that they are dynamically significant if planetesimals exist in a Beta Pic Oort cloud. We provide a first-order estimate for the evolutionary state of a Beta Pic Oort cloud and conclude that the primary role of these stellar perturbations would be to help build a comet cloud rather than destroy a pre-existing structure. The stellar sample is 20% complete and motivates future work to identify less common close interactions that would significantly modify the observed circumstellar disk. For future radial velocity study we identify six stars in the Hipparcos Catalog that may have approached Beta Pic to within 0.1 pc and therefore remain as candidate disk perturbers.Comment: 23 pages, 5 figures, Accepted for publication in Ap

    An overview of the mid-infrared spectro-interferometer MATISSE: science, concept, and current status

    Full text link
    MATISSE is the second-generation mid-infrared spectrograph and imager for the Very Large Telescope Interferometer (VLTI) at Paranal. This new interferometric instrument will allow significant advances by opening new avenues in various fundamental research fields: studying the planet-forming region of disks around young stellar objects, understanding the surface structures and mass loss phenomena affecting evolved stars, and probing the environments of black holes in active galactic nuclei. As a first breakthrough, MATISSE will enlarge the spectral domain of current optical interferometers by offering the L and M bands in addition to the N band. This will open a wide wavelength domain, ranging from 2.8 to 13 um, exploring angular scales as small as 3 mas (L band) / 10 mas (N band). As a second breakthrough, MATISSE will allow mid-infrared imaging - closure-phase aperture-synthesis imaging - with up to four Unit Telescopes (UT) or Auxiliary Telescopes (AT) of the VLTI. Moreover, MATISSE will offer a spectral resolution range from R ~ 30 to R ~ 5000. Here, we present one of the main science objectives, the study of protoplanetary disks, that has driven the instrument design and motivated several VLTI upgrades (GRA4MAT and NAOMI). We introduce the physical concept of MATISSE including a description of the signal on the detectors and an evaluation of the expected performances. We also discuss the current status of the MATISSE instrument, which is entering its testing phase, and the foreseen schedule for the next two years that will lead to the first light at Paranal.Comment: SPIE Astronomical Telescopes and Instrumentation conference, June 2016, 11 pages, 6 Figure

    Gas Lines from the 5-Myr old Optically Thin Disk around HD141569A

    Get PDF
    At the distance of 99-116 pc, HD141569A is one of the nearest HerbigAe stars that is surrounded by a tenuous disk, probably in transition between a massive primordial disk and a debris disk. We observed the fine-structure lines of OI at 63 and 145 micron and the CII line at 157 micron with the PACS instrument onboard the Herschel Space Telescope as part of the open-time large programme GASPS. We complemented the atomic line observations with archival Spitzer spectroscopic and photometric continuum data, a ground-based VLT-VISIR image at 8.6 micron, and 12CO fundamental ro-vibrational and pure rotational J=3-2 observations. We simultaneously modeled the continuum emission and the line fluxes with the Monte Carlo radiative transfer code MCFOST and the thermo-chemical code ProDiMo to derive the disk gas- and dust properties assuming no dust settling. The models suggest that the oxygen lines are emitted from the inner disk around HD141569A, whereas the [CII] line emission is more extended. The CO submillimeter flux is emitted mostly by the outer disk. Simultaneous modeling of the photometric and line data using a realistic disk structure suggests a dust mass derived from grains with a radius smaller than 1 mm of 2.1E-7 MSun and from grains with a radius of up to 1 cm of 4.9E-6 MSun. We constrained the polycyclic aromatic hydrocarbons (PAH) mass to be between 2E-11 and 1..4E-10 MSun assuming circumcircumcoronene (C150H30) as the representative PAH. The associated PAH abundance relative to hydrogen is lower than those found in the interstellar medium (3E-7) by two to three orders of magnitude. The disk around HD141569A is less massive in gas (2.5 to 4.9E-4 MSun or 67 to 164 MEarth) and has a flat opening angle (\u3c10%). [abridged
    corecore