3,178 research outputs found

    Quadruplewild-type (WT) GIST: defining the subset of GIST that lacks abnormalities of KIT, PDGFRA, SDH, or RAS signaling pathways

    Get PDF
    A subset of GISTs lack mutations in the KIT/PDGFRA or RAS pathways and yet retain an intact succinate dehydrogensase (SDH) complex. We propose that these KIT/PDGFRA/SDH/RAS-P WT GIST tumors be designated as quadruple wild-type (WT) GIST. Further molecular and clinicophatological characterization of quadruple WT GIST will help to determine their prognosis as well as assist in the optimization of medical management, including clinical test of novel therapies

    Liquid biopsy in gastrointestinal stromal tumors: a novel approach

    Full text link
    The role of molecular analysis in the management of gastrointestinal stromal tumors (GIST) remains indisputable. To date, tumor tissue extracted from specimens obtained by surgical or biopsy procedures has been the only source of the tumor DNA required for the molecular and genomic assessment of cancer. However, tumor tissue sampling has several clinical limitations: for example, the invasiveness of these procedures precludes repeated sampling. Thus, it is possible to obtain only a static molecular picture of the disease, a picture that lacks the inter- and intra-metastatic molecular heterogeneity that characterizes most GIST. In contrast, circulating tumor DNA obtained from a patient's bloodstream, known as liquid biopsy, can theoretically overcome the limitations of tissue biopsies and provide the same molecular and genomic information. GIST are recognized as a paradigm of molecular biology among solid tumors. Although few but promising data on liquid biopsy in GIST have been accumulated to date, these tumors may provide the optimal field for application of this challenging approac

    Personalized Medicine in Gastrointestinal Stromal Tumor (GIST): Clinical Implications of the Somatic and Germline DNA Analysis

    Get PDF
    Gastrointestinal stromal tumors (GIST) are the most common mesenchymal tumors of the gastrointestinal tract. They are characterized by gain of function mutations in KIT or PDGFRA tyrosine kinase receptors, with their consequent constitutive activation. The gold standard therapy is imatinib that offers a good and stable response for approximately 18-36 months. However, resistance is very common and it is vital to identify new biomarkers. Up until now, there have been two main approaches with focus to characterize novel targets. On the one hand, the focus is on the tumor genome, as the final clinical outcome depends mainly from the cancer specific mutations/alterations patterns. However, the germline DNA is important as well, and it is inconceivable to think the patients response to the drug is not related to it. Therefore the aim of this review is to outline the state of the art of the personalized medicine in GIST taking into account both the tumor DNA (somatic) and the patient DNA (germline)

    SDHC methylation in gastrointestinal stromal tumors (GIST): a case report

    Get PDF
    Gastrointestinal stromal tumors (GIST) recently have been recognized as a genetically and biologically heterogeneous disease. In addition to KIT or PDGFRA mutated GIST, mutational inactivation of succinate dehydrogenase (SDH) subunits has been detected in the KIT/PDGFRA wild-type subgroup, referred to as SDH deficient (dSDH). Even though most dSDH GIST harbor mutations in SDHx subunit genes, some are SDHx wild type. Epigenetic regulation by DNA methylation of CpG islands recently has been found to be an alternative mechanism underlying the lack of SDH complex in GIST

    Mechanisms of resistance to a PI3K inhibitor in gastrointestinal stromal tumors: an omic approach to identify novel druggable targets

    Get PDF
    Background: Gastrointestinal stromal tumors (GISTs) represent a worldwide paradigm of target therapy. The introduction of tyrosine kinase inhibitors has deeply changed the prognosis of GIST patients, however, the majority of them acquire secondary mutations and progress. Unfortunately, besides tyrosine-kinase inhibitors, no other therapeutic options are available. Therefore, it is mandatory to identify novel molecules and/or strategies to overcome the inevitable resistance. In this context, after promising preclinical data on the novel PI3K inhibitor BYL719, the NCT01735968 trial in GIST patients who had previously failed treatment with imatinib and sunitinib started. BYL719 has attracted our attention, and we comprehensively characterized genomic and transcriptomic changes taking place during resistance. Methods: For this purpose, we generated two in vitro GIST models of acquired resistance to BYL719 and performed an omic-based analysis by integrating RNA-sequencing, miRNA, and methylation profiles in sensitive and resistant cells. Results: We identified novel epigenomic mechanisms of pharmacological resistance in GISTs suggesting the existence of pathways involved in drug resistance and alternatively acquired mutations. Therefore, epigenomics should be taken into account as an alternative adaptive mechanism. Conclusion: Despite the fact that currently we do not have patients in treatment with BYL719 to verify this hypothesis, the most intriguing result is the involvement of H19 and PSTA1 in GIST resistance, which might represent druggable targets

    Vaginal Lactoferrin Modulates PGE 2

    Get PDF
    Inflammation plays an important role in pregnancy, and cytokine and matrix metalloproteases (MMPs) imbalance has been associated with premature rupture of membranes and increased risk of preterm delivery. Previous studies have demonstrated that lactoferrin (LF), an iron-binding protein with anti-inflammatory properties, is able to decrease amniotic fluid (AF) levels of IL-6. Therefore, we aimed to evaluate the effect of vaginal LF administration on amniotic fluid PGE2 level and MMP-TIMP system in women undergoing genetic amniocentesis. One hundred and eleven women were randomly divided into controls (n = 57) or treated with LF 4 hours before amniocentesis (n = 54). Amniotic fluid PGE2, active MMP-9 and MMP-2, and TIMP-1 and TIMP-2 concentrations were determined by commercially available assays and the values were normalized by AF creatinine concentration. PGE2, active MMP-9, and its inhibitor TIMP-1 were lower in LF-treated group than in controls (p < 0.01, p < 0.005, and p < 0.001, resp.). Conversely, active MMP-2 (p < 0.0001) and MMP-2/TIMP-2 molar ratio (p < 0.001) were increased, whilst TIMP-2 was unchanged. Our data suggest that LF administration is able to modulate the inflammatory response following amniocentesis, which may counteract cytokine and prostanoid imbalance that leads to abortion. This trial is registered with Clinical Trial number NCT02695563

    Whole exome sequencing (WES) on formalin-fixed, paraffin-embedded (FFPE) tumor tissue in gastrointestinal stromal tumors (GIST)

    Get PDF
    Next generation sequencing (NGS) technology has been rapidly introduced into basic and translational research in oncology, but the reduced availability of fresh frozen (FF) tumor tissues and the poor quality of DNA extracted from formalin-fixed, paraffin-embedded (FFPE) has significantly impaired this process in the field of solid tumors. To evaluate if data generated from FFPE material can be reliably produced and potentially used in routine clinical settings, we performed whole exome sequencing (WES) from tumor samples of Gastrointestinal stromal tumors (GIST), either extracted FF or FFPE, and from matched normal DNA

    Evaluation of Modified PEG-Anilinoquinazoline Derivatives as Potential Agents for EGFR Imaging in Cancer by Small Animal PET

    Get PDF
    Purpose: The in vivo evaluation of three modified polyethylene glycol (PEG)-anilinoquinazoline derivatives labeled with 124 I, 18 F, and 11 C as potential positron emission tomography (PET) bioprobes for visualizing epidermal growth factor receptor (EGFR) in cancer using small animal PET. Procedures: Xenograft mice with the human glioblastoma cell lines U138MG (lacking EGFR expression) and U87MG.wtEGFR (transfected with an overexpressing human wild-type EGFR gene) were used. Static and dynamic PET imaging was conducted for all three PEGylated compounds. Tumor necrosis, microvessel density, and EGFR levels were evaluated by histopathology and enzyme-linked immunosorbent assay. Results: Nineteen animal models were generated (two U138MG, three U87MG, 14 with both U138MG and U87MG bilateral masses). In static images, a slight increase in tracer uptake was observed in tumors, but in general, there was no retention of tracer uptake over time and no difference in uptake between U138MG and U87MG masses. In addition, no significant uptake was demonstrated in dynamic scans of the 18 F-PEG tracer. No necrosis was present except in four animals. MVD was 9.6 and 48 microvessels/×400 field in the U138GM and U87GM masses
    corecore