172 research outputs found

    stairs and fire

    Get PDF

    Discutindo a educação ambiental no cotidiano escolar: desenvolvimento de projetos na escola formação inicial e continuada de professores

    Get PDF
    A presente pesquisa buscou discutir como a Educação Ambiental (EA) vem sendo trabalhada, no Ensino Fundamental e como os docentes desta escola compreendem e vem inserindo a EA no cotidiano escolar., em uma escola estadual do município de Tangará da Serra/MT, Brasil. Para tanto, realizou-se entrevistas com os professores que fazem parte de um projeto interdisciplinar de EA na escola pesquisada. Verificou-se que o projeto da escola não vem conseguindo alcançar os objetivos propostos por: desconhecimento do mesmo, pelos professores; formação deficiente dos professores, não entendimento da EA como processo de ensino-aprendizagem, falta de recursos didáticos, planejamento inadequado das atividades. A partir dessa constatação, procurou-se debater a impossibilidade de tratar do tema fora do trabalho interdisciplinar, bem como, e principalmente, a importância de um estudo mais aprofundado de EA, vinculando teoria e prática, tanto na formação docente, como em projetos escolares, a fim de fugir do tradicional vínculo “EA e ecologia, lixo e horta”.Facultad de Humanidades y Ciencias de la Educació

    Controlled Impedance-Admittance-Torque Nonlinear Modeling and Analysis of Modern Power Systems

    No full text
    Modern power systems are continuously transformed into decentralized ones where distributed generation (DG) plays a key role. Almost all the different distributed energy resources (DERs) are connected in geographically dispersed places through controlled power electronic interfaces in a manner that essentially affects the dynamic performance and control of the whole power system. Simultaneously, rotating machines in power production or absorption, dominate the system response and stability. In this new frame, this paper proposes a novel generalized dynamic representation and full scale modeling of a modern power system based on the well-known impedance-admittance (IA) network model for the electricity grid, substantially extended to include in detail both the power converter devices by considering the controlled power electronic dynamics and the electrical machines by inserting their full electromechanical dynamics. This formulation results in a holistic nonlinear dynamic description, defined here as controlled impedance-admittance-torque (CIAT) model of the whole system which features common structural characteristics. The model is deployed in state space, involves all the controlled inputs in DG, namely the duty-ratio signals of each power converter interface, all the other external inputs affecting the system, namely all the known or unknown voltage, current, and torque inputs. As shown in the paper, the proposed CIAT model retains its fundamental properties for any DG and network topology, standard or varying. This enables the compression of the accurate analytic power system dynamic description into a matrix-based generic nonlinear model that can be easily used for analysis studies of such large-scale systems. Taking into account the nonlinear nature of the CIAT matrix-based model and the persistent action of the external inputs, Lyapunov methods deployed on recently established input to state stability (ISS) notions are systematically applied for the system analysis. Hence, the traditionally used small-signal model-based analysis that suffers from the intermittent and continuously changing operation of DERs is completely substituted by the proposed formulation. A modern power system example with different DERs involved is analyzed by this way and is extensively simulated to verify the validity of the proposed method

    Macular hole formation after toxoplasmic retinochoroiditis

    No full text
    A 56-year-old female patient presented with toxoplasmic retinochoroiditis (TR) in the right eye. Optical coherence tomography revealed a full-thickness macular hole (MH) in the affected eye. Fluorescence angiography and indocyanine green-angiography disclosed focal choroidal ischaemia in the area of inflammation. Heidelberg retinal flowmetry confirmed the significant hypoperfusion in this area. Proper medication was administered. Ophthalmological examination 4 weeks later revealed an improvement of the clinical findings without visual restoration. This case supports the clinical hypothesis that retinochoroidal ischaemia due to TR may induce the development of MH, indicating that patients with TR may have a certain risk for MH formation

    Human-centered safety analysis of prospective road designs

    No full text
    One of the most important issues in road safety management is the lack of reliable methods for predicting the likelihood of accidents. Road safety assessment systems have been developed; however, these systems only employ historical or retrospective analyses, and the human factor element is weak or missing. Effective safety management requires both holistic and prospective viewpoints, with human factors having an intrinsic role. The main goal of this paper is to contribute toward that need through the application of Bayesian belief networks and road traffic simulation for validating the safety requirements of prospective road designs. The theoretical platform of the method is the concepts of human performance and mental workload and how these affect accident likelihood. This paper presents a novel method and a tool that integrates these two mature technologies, for assessing the safety performance of road designs before they are developed. A case study is included that illustrates the application of the method and tool.

    Validation of Novel PLL-driven PI Control Schemes on Supporting VSIs in Weak AC-Connections

    No full text
    The integration of distributed energy resources (DERs) in modern power systems has substantially changed the local control capabilities of the grid since the majority of DERs are connected through a controlled dc/ac inverter interface. Such long-distance located DER installations, usually represented by current regulated dc sources, can inject large amounts of power into the main ac grid at points where the strength of the ac connection is low. The efficient and stable performance of such a power scheme is related to the capability of the control applied to retain the power extraction close to the maximum and simultaneously to regulate the dc-side voltage as well as the ac-side voltage magnitude at the weak ac connection point. This is implemented by designing the controllers of the voltage source inverters (VSIs) in a manner that reliably satisfies the above tasks. To this end, decentralized cascaded control schemes, driven by novel, locally implemented phase locked loops (PLLs), suitable to work in weak ac connections, are proposed for the VSI performance regulation by using new fast inner-loop proportional-integral (PI) current controllers. A decisive innovation is proposed by inserting an extra damping term in the inner-loop controllers to guarantee stability and convergence to the desired equilibrium. This is analytically proven by a rigorous analysis based on the entire nonlinear system model, where advanced Lyapunov-based methods are deployed in detail. As a good transient response of the VSI interface is indeed critical for the energy and grid system management, the conducted simulation and experimental results confirm that the proposed scheme efficiently supports the ac- and dc-side voltages of the VSI under different varying conditions in the power production or any voltage changes of the main grid

    Deciding on Optical Illusions: Reduced Alpha Power in Body Dysmorphic Disorder

    No full text
    Background: Body dysmorphic disorder (BDD) is a psychiatric disorder characterized by excessive preoccupation with imagined defects in appearance. Optical illusions induce illusory effects that distort the presented stimulus, thus leading to ambiguous percepts. Using electroencephalography (EEG), we investigated whether BDD is related to differentiated perception during illusory percepts. Methods: A total of 18 BDD patients and 18 controls were presented with 39 optical illusions together with a statement testing whether or not they perceived the illusion. After a delay period, they were prompted to answer whether the statement was right/wrong and their degree of confidence in their answer. We investigated differences of BDD patients on task performance and self-reported confidence and analyzed the brain oscillations during decision-making using nonparametric cluster statistics. Results: Behaviorally, the BDD group exhibited reduced confidence when responding incorrectly, potentially attributed to higher levels of doubt. Electrophysiologically, the BDD group showed significantly reduced alpha power at the fronto-central and parietal scalp areas, suggesting impaired allocation of attention. Interestingly, the lower the alpha power of the identified cluster, the higher the BDD severity, as assessed by BDD psychometrics. Conclusions: Results evidenced that alpha power during illusory processing might serve as a quantitative EEG biomarker of BDD, potentially associated with reduced inhibition of task-irrelevant areas

    Aristotle Meets Zeno: Psychophysiological Evidence

    No full text
    <div><p>This study, a tribute to Aristotle's 2400 years, used a juxtaposition of valid Aristotelian arguments to the paradoxes formulated by Zeno the Eleatic, in order to investigate the electrophysiological correlates of attentional and /or memory processing effects in the course of deductive reasoning. Participants undertook reasoning tasks based on visually presented arguments which were either (a) valid (Aristotelian) statements or (b) paradoxes. We compared brain activation patterns while participants maintained the premises / conclusions of either the valid statements or the paradoxes in working memory (WM). Event-related brain potentials (ERPs), specifically the P300 component of ERPs, were recorded during the WM phase, during which participants were required to draw a logical conclusion regarding the correctness of the valid syllogisms or the paradoxes. During the processing of paradoxes, results demonstrated a more positive event-related potential deflection (P300) across frontal regions, whereas processing of valid statements was associated with noticeable P300 amplitudes across parieto-occipital regions. These findings suggest that paradoxes mobilize frontal attention mechanisms, while valid deduction promotes parieto-occipital activity associated with attention and/or subsequent memory processing.</p></div
    corecore