18 research outputs found

    The effect of green waste composting on the concentration and composition of ambient bioaerosols

    Get PDF
    The emission and dispersal of bioaerosols from commercial composting facilities has become an issue of increasing concern over the past decade, as historical evidence links bioaerosol exposure to negative human health impacts. As a result, recommended concentrations and risk assessment limits were imposed in 2001. However, more recent research has suggested that these limits may be exceeded under certain circumstances. For example, underestimation of bioaerosol concentrations may occur through „snapshot‟ sampling, and the use of methods that may reduce culturability of bioaerosols. This study aimed to address several gaps in knowledge, including quantification of bioaerosol concentrations downwind from sites, analysis of the effect that operational and environmental influences have on emission and downwind concentrations, and investigation of methods for the enumeration of non-culturable bioaerosols. The concentrations of bioaerosols upwind, on-site and downwind from two open-air green waste windrow composting facilities were enumerated in extensive detail, producing the first detailed and validated database of bioaerosol concentrations at green-waste composting facilities. The effects of composting processing activities, season, and meteorological conditions on concentrations were also investigated utilising this dataset. Results from these studies suggested that bioaerosols are able to disperse in elevated concentrations to distances beyond the 250 m risk assessment limit. Downwind peaks in concentration were directly linked to compost processing activities on-site, with the risk of sensitive receptor exposure to bioaerosols during non-operational hours minimal. Further, it was found that patterns in downwind concentrations of bioaerosols are likely to be governed by buoyancy effects, as a second peak in concentrations was found at 100-150m downwind. This finding was further supported through the use of a novel direct counting method. Finally, molecular methods allowed the composition of bioaerosols emitted from composting to be determined and showed that composting significantly alters the aerobiotic community at distances downwind. The methods investigated provide the potential for detailed, continuous measurements of bioaerosols, alongside identification of potentially pathogenic microorganisms, and could ultimately lead to source apportionment of bioaerosols.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The intracellular chloride ion channel protein CLIC1 undergoes a redox-controlled structural transition.

    Get PDF
    Most proteins adopt a well defined three-dimensional structure; however, it is increasingly recognized that some proteins can exist with at least two stable conformations. Recently, a class of intracellular chloride ion channel proteins (CLICs) has been shown to exist in both soluble and integral membrane forms. The structure of the soluble form of CLIC1 is typical of a soluble glutathione S-transferase superfamily protein but contains a glutaredoxin-like active site. In this study we show that on oxidation CLIC1 undergoes a reversible transition from a monomeric to a non-covalent dimeric state due to the formation of an intramolecular disulfide bond (Cys-24-Cys-59). We have determined the crystal structure of this oxidized state and show that a major structural transition has occurred, exposing a large hydrophobic surface, which forms the dimer interface. The oxidized CLIC1 dimer maintains its ability to form chloride ion channels in artificial bilayers and vesicles, whereas a reducing environment prevents the formation of ion channels by CLIC1. Mutational studies show that both Cys-24 and Cys-59 are required for channel activity

    Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis.

    Get PDF
    The rise of antibiotic-resistant bacteria has led to an urgent need for rapid detection of drug resistance in clinical samples, and improvements in global surveillance. Here we show how de Bruijn graph representation of bacterial diversity can be used to identify species and resistance profiles of clinical isolates. We implement this method for Staphylococcus aureus and Mycobacterium tuberculosis in a software package ('Mykrobe predictor') that takes raw sequence data as input, and generates a clinician-friendly report within 3 minutes on a laptop. For S. aureus, the error rates of our method are comparable to gold-standard phenotypic methods, with sensitivity/specificity of 99.1%/99.6% across 12 antibiotics (using an independent validation set, n=470). For M. tuberculosis, our method predicts resistance with sensitivity/specificity of 82.6%/98.5% (independent validation set, n=1,609); sensitivity is lower here, probably because of limited understanding of the underlying genetic mechanisms. We give evidence that minor alleles improve detection of extremely drug-resistant strains, and demonstrate feasibility of the use of emerging single-molecule nanopore sequencing techniques for these purposes

    The Effect of Green Waste Composting on the Concentration and Composition of Ambient Bioaerosols

    Get PDF
    The emission and dispersal of bioaerosols from commercial composting facilities has become an issue of increasing concern over the past decade, as historical evidence links bioaerosol exposure to negative human health impacts. As a result, recommended concentrations and risk assessment limits were imposed in 2001. However, more recent research has suggested that these limits may be exceeded under certain circumstances. For example, underestimation of bioaerosol concentrations may occur through „snapshot‟ sampling, and the use of methods that may reduce culturability of bioaerosols. This study aimed to address several gaps in knowledge, including quantification of bioaerosol concentrations downwind from sites, analysis of the effect that operational and environmental influences have on emission and downwind concentrations, and investigation of methods for the enumeration of non-culturable bioaerosols. The concentrations of bioaerosols upwind, on-site and downwind from two open-air green waste windrow composting facilities were enumerated in extensive detail, producing the first detailed and validated database of bioaerosol concentrations at green-waste composting facilities. The effects of composting processing activities, season, and meteorological conditions on concentrations were also investigated utilising this dataset. Results from these studies suggested that bioaerosols are able to disperse in elevated concentrations to distances beyond the 250 m risk assessment limit. Downwind peaks in concentration were directly linked to compost processing activities on-site, with the risk of sensitive receptor exposure to bioaerosols during non-operational hours minimal. Further, it was found that patterns in downwind concentrations of bioaerosols are likely to be governed by buoyancy effects, as a second peak in concentrations was found at 100-150m downwind. This finding was further supported through the use of a novel direct counting method. Finally, molecular methods allowed the composition of bioaerosols emitted from composting to be determined and showed that composting significantly alters the aerobiotic community at distances downwind. The methods investigated provide the potential for detailed, continuous measurements of bioaerosols, alongside identification of potentially pathogenic microorganisms, and could ultimately lead to source apportionment of bioaerosols

    Endotoxin emissions from commercial composting activities

    Get PDF
    This paper describes an exploratory study of endotoxin emissions and dispersal from a commercial composting facility. Replicated samples of air were taken by filtration at different locations around the facility on 10 occasions. Measurements were made of endotoxin and associated culturable microorganisms. The inflammatory response of cell cultures exposed to extracts from the filters was measured. Endotoxin was detected in elevated concentrations close to composting activities. A secondary peak, of lesser magnitude than the peak at source was detected at 100-150 m downwind of the site boundary. Unexpectedly high concentrations of endotoxin were measured at the most distant downwind sampling point. Extracted endotoxin was found to stimulate human monocytes and a human lung epithelial cell line to produce significant amounts of pro- inflammatory cytokines. On a weight basis, endotoxin extracted from the composting source has a greater inflammatory cytokine inducing effect than commercial E. coli endotoxin

    Self propagating high temperature synthesis of magnesium zinc ferrites (MgxZn1-xFe2O3): thermal imaging and time resolved X-ray diffraction experiments

    No full text
    Spinel ferrites of the form MgxZn1-xFe2O4 ( x = 0. 0.25, 0.50, 0.75, 1.00) were prepared by self-propagating high-temperature synthesis (SHS) from reactions of iron(III), zinc and magnesium oxides, iron powder and sodium perchlorate. The driving force for the reactions is the oxidation of iron powder. Reactions were carried out in the presence of an external magnetic field of 0.2 or 1.1 T. Reaction velocity and temperatures were obtained by thermal imaging camera. The transformation of reactants to products was studied by time resolved X-ray diffraction using Rietveld refinement for determination of phase percentages. Reactions typically reached temperatures in excess of 1150 degreesC with a timescale of complete conversion of reactant to products of 20 s. All materials were characterised by X-ray powder diffraction (XRD), energy dispersive X-ray analysis (EDXA), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), Mossbauer spectroscopy and vibrating sample magnetometry (VSM)

    Soil suppressiveness and functional diversity of the soil microflora in organic farming systems

    No full text
    Arable fields of 10 organic farms from different locations in The Netherlands were sampled in three subsequent years. The soil samples were analysed for disease suppressiveness against Rhizoctonia solani AG2.2IIIB in sugar beet, Streptomyces scabies in radish and Verticillium longisporum in oilseed rape. In addition, a variety of microbial, chemical and physical soil characteristics were assessed. All data were correlated by multiple regression and multivariate analyses with the objective to find correlations between soil suppressiveness and biotic or abiotic soil characteristics. Significant differences in soil suppressiveness were found between the fields for all three diseases. Multiple regression indicated a significant correlation between suppressiveness against Rhizoctonia and the number of antagonistic Lysobacter spp., as well as with % active fungi and bacterial diversity. Grass-clover stimulated Rhizoctonia suppression as well as the presence of antagonistic Lysobacter spp. (mainly L. antibioticus and L. gummosus) in clay soils. Streptomyces suppression correlated with the number of antagonistic Streptomyces spp., % of active fungi and bacterial population size. The presence of antagonistic Streptomyces spp. correlated with a high fungal/bacterial biomass ratio. Verticillium suppression was only measured in 2004 and 2005, due to the inconsistent suppressiveness along the years. Nevertheless, a significant correlation with pH, potential nitrogen mineralization and bacterial biomass was found. Bacterial and fungal PCR-denaturing gel electrophoresis fingerprinting of bacterial and fungal communities, in general, did not significantly correlate with disease suppression. Highly significant explanatory factors of the composition of the dominating bacterial and fungal populations were % lutum, pH, C/N quotient, biomass and growth rate of bacteria. Additionally, the % of organic matter and years of organic farming were explaining significantly the composition of the bacterial populatio

    Nested Russian doll-like genetic mobility drives rapid dissemination of the carbapenem resistance gene blaKPC

    Get PDF
    The recent widespread emergence of carbapenem resistance in Enterobacteriaceae is a major public health concern, as carbapenems are a therapy of last resort in this family of common bacterial pathogens. Resistance genes can mobilize via various mechanisms including conjugation and transposition, however the importance of this mobility in short-term evolution, such as within nosocomial outbreaks, is currently unknown. Using a combination of short- and long-read whole genome sequencing of 281 blaKPC-positive Enterobacteriaceae isolated from a single hospital over five years, we demonstrate rapid dissemination of this carbapenem resistance gene to multiple species, strains, and plasmids. Mobility of blaKPC occurs at multiple nested genetic levels, with transmission of blaKPC strains between individuals, frequent transfer of blaKPC plasmids between strains/species, and frequent transposition of the blaKPC transposon Tn4401 between plasmids. We also identify a common insertion site for Tn4401 within various Tn2-like elements, suggesting that homologous recombination between Tn2-like elements has enhanced the spread of Tn4401 between different plasmid vectors. Furthermore, while short-read sequencing has known limitations for plasmid assembly, various studies have attempted to overcome this with the use of reference-based methods. We also demonstrate that as a consequence of the genetic mobility observed herein, plasmid structures can be extremely dynamic, and therefore these reference-based methods, as well as traditional partial typing methods, can produce very misleading conclusions. Overall, our findings demonstrate that non-clonal resistance gene dissemination can be extremely rapid, presenting significant challenges for public health surveillance and achieving effective control of antibiotic resistance
    corecore