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The recent widespread emergence of carbapenem resistance in Enterobacteriaceae is a major public health concern, as carbapen-
ems are a therapy of last resort against this family of common bacterial pathogens. Resistance genes can mobilize via various
mechanisms, including conjugation and transposition; however, the importance of this mobility in short-term evolution, such as
within nosocomial outbreaks, is unknown. Using a combination of short- and long-read whole-genome sequencing of 281
blaKPC-positive Enterobacteriaceae isolates from a single hospital over 5 years, we demonstrate rapid dissemination of this car-
bapenem resistance gene to multiple species, strains, and plasmids. Mobility of blaKPC occurs at multiple nested genetic levels,
with transmission of blaKPC strains between individuals, frequent transfer of blaKPC plasmids between strains/species, and fre-
quent transposition of blaKPC transposon Tn4401 between plasmids. We also identify a common insertion site for Tn4401 within
various Tn2-like elements, suggesting that homologous recombination between Tn2-like elements has enhanced the spread of
Tn4401 between different plasmid vectors. Furthermore, while short-read sequencing has known limitations for plasmid assem-
bly, various studies have attempted to overcome this by the use of reference-based methods. We also demonstrate that, as a con-
sequence of the genetic mobility observed in this study, plasmid structures can be extremely dynamic, and therefore these refer-
ence-based methods, as well as traditional partial typing methods, can produce very misleading conclusions. Overall, our
findings demonstrate that nonclonal resistance gene dissemination can be extremely rapid, presenting significant challenges for
public health surveillance and achieving effective control of antibiotic resistance.

Although antibiotic resistance genes have been identified in
ancient bacterial DNA (1), much of the recent, alarming

increase in pathogen antimicrobial resistance is attributable to
the dissemination of resistance genes via horizontal gene trans-
fer (HGT) in response to selection imposed by widespread
antibiotic use in medicine and agriculture (2, 3). Many resis-
tance genes are located on plasmids that can be transferred
between different bacterial strains or species, thus facilitating
HGT (4). Furthermore, resistance gene mobility can be en-
hanced by integration into transposable elements, which are
short stretches of DNA (several kilobases) that can autono-
mously mobilize between different genomic locations (5).
However, the importance of HGT in short-term evolution is
unclear, as capturing the processes in real time is challenging
and outbreaks in health care settings are often thought to be
dominated by clonal transmission (6–9).

Carbapenem resistance in Enterobacteriaceae has been recog-
nized as a key threat to modern medicine (10, 11), as carbapenems
often represent the therapy of last resort for serious infections (12,
13). One of the most prevalent carbapenem resistance genes is the
Klebsiella pneumoniae carbapenemase (KPC) gene, blaKPC, first
identified in 1996 and now endemic to many regions of the world
(14). KPC is a beta-lactamase capable of hydrolyzing all beta-lac-
tams, including penicillins, monobactams, cephalosporins, and
carbapenems (15), leaving few treatment options for infected vul-

nerable hospitalized patients and resulting in worse treatment
outcomes (16).

Most reports of blaKPC involve K. pneumoniae multilocus se-
quence type 258 (ST258) (9, 17), which has been found globally,
indicating that clonal dissemination of this resistant lineage has
been an important factor in the spread of blaKPC (9, 17–20). Nev-
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ertheless, blaKPC has also been observed in other K. pneumoniae
lineages, as well as other species of Enterobacteriaceae, suggesting
that blaKPC HGT has also played a role in resistance dissemination
(21–25). As blaKPC is often found on conjugative plasmids, some
of which have been identified in multiple strains or species, this
provides a likely mechanism for HGT (21, 26, 27). In addition,
blaKPC is usually present as part of the 10-kb Tn3-based mobile
transposon Tn4401, which has been identified in various different
plasmids, implicating Tn4401 transposition as another mecha-
nism contributing to blaKPC spread (28, 29).

While Tn4401 transposition and plasmid conjugation have
been measured in the laboratory (28, 30, 31), the frequencies with
which these processes occur within real-world ecosystems are not
fully understood. In clinical contexts, it is often assumed that
short-term evolution is dominated by clonal propagation, such
that transmission chains generally involve a single pathogenic
strain. However, if HGT is frequent relative to transmission (e.g.,
a “plasmid outbreak”), then linked patients may show variation in
strain composition. If transposition is also frequent, then both the
host strain and the resistance plasmid may show high variability
within a single outbreak. As current surveillance strategies tend to
focus on the host strain, it is important to establish the relevance of
blaKPC mobility within outbreak settings.

Traditional approaches to plasmid investigation, such as PCR-
based replicon typing, are limited in resolution. Next-generation
sequencing has been successfully applied to molecular epidemio-
logical investigation of a number of pathogens at the host strain
level; however, the application and limitations of this technology
for transmission chains involving HGT are relatively unexplored.
Whole-genome sequencing using short-read technologies (e.g.,
Illumina) has become cheap and accessible but is not ideal for
plasmid analysis because of de novo assembly limitations, as it is
often not possible to accurately reconstruct the genomic context
surrounding repeated sequences (21, 32). Long-read sequencing
(e.g., PacBio) can largely overcome this, often providing single-
contig plasmid assemblies, but it is prohibitively expensive for
many applications. Several studies have utilized reference-based
methods for plasmid assembly or inference of plasmid structures
using short-read data (33, 34); however, these approaches make
the implicit assumption that plasmid structures are relatively sta-
ble. It will be important to understand the potential shortcomings
of these assumptions in relation to mobile genetic elements, which
may frequently be involved in plasmid rearrangements. Under-
standing when and how to successfully apply short- and/or long-
read sequencing technologies to molecular epidemiology tracking
will be important to the field as the incidence of HGT is increas-
ingly recognized (35).

At our institution, blaKPC was first identified in 2007 in a
patient simultaneously colonized with blaKPC-positive K.
pneumoniae and Klebsiella oxytoca harboring blaKPC plasmids
pKPC_UVA01 and pKPC_UVA02, respectively (36, 37). Since
then, we have prospectively screened extended-spectrum cepha-
losporin-resistant/carbapenem-nonsusceptible isolates of all En-
terobacteriaceae species for blaKPC, despite national guidelines that
recommend that screening focus on carbapenem-nonsusceptible
Klebsiella species and Escherichia coli (38–41). Here we describe
the genetic basis of nonclonal blaKPC emergence in a single hospi-
tal setting by using a combination of short- and long-read whole-
genome sequencing methods to provide genomic characterization

of 281 Enterobacteriaceae isolates from the first 5 years of this
multispecies blaKPC outbreak.

MATERIALS AND METHODS
Isolate collection and Illumina sequencing. Isolates were prospectively
collected from August 2007 to December 2012 through the Clinical Mi-
crobiology Laboratory of the University of Virginia Health System, which
serves a 619-bed tertiary care hospital, outpatient clinics in central Vir-
ginia, and since August 2010, a 40-bed long-term acute care hospital.
From April 2009, weekly surveillance by perirectal swab was performed in
all inpatient units with historically high transmission or where there was a
patient who was known to be colonized or infected with carbapenemase-
producing Enterobacteriaceae (CPE) by previously described methods
(40, 42, 43). Enterobacteriaceae isolates from nonsurveillance clinical sam-
ples that were flagged as possible extended-spectrum �-lactamase (ESBL)
producing or had an ertapenem MIC of �1 �g/ml by automated suscep-
tibility profiling (VITEK2; bioMérieux, Durham, NC) underwent carbap-
enemase phenotypic testing by the modified Hodge test (August 2007 to
June 2008) or the indirect carbapenemase test (July 2008 to December
2012). Isolates with a positive carbapenemase phenotypic test and/or a
meropenem or imipenem MIC of �1 �g/ml underwent blaKPC PCR anal-
ysis as previously described (39).

A subset of 37 K. pneumoniae isolates, with corresponding sequence
data, have been previously described (37). For the rest of the study isolates,
Illumina sequencing, de novo assembly, mapping, and variant calling were
performed as previously described (37), with some exceptions (see the
supplemental material), and including the use of additional, species-spe-
cific references for mapping (see Table S5 in the supplemental material). A
total of 281 isolates from 182 patients were available for analysis; for the
exclusion criteria used for additional isolates, see the supplemental mate-
rial.

Classification to the species level. Classification to the species level
was performed by microbiological and sequenced-based methods (see the
supplemental material for details).

Phylogenetic analysis and strain classification. There were 52 pa-
tients with multiple isolates of the same species. One of these (patient FK)
carried two strains of K. pneumoniae that were highly divergent from each
other (�20,000 chromosomal single-nucleotide variants [SNVs]), clearly
representing a separate acquisition of blaKPC by each strain. Excluding this
divergent strain pair, the remaining cases had differences ranging from 0
to 60 SNVs (median, 2 SNVs). As these could plausibly represent clonal
evolution within the patient, we conservatively chose to include only a
single representative (the earliest isolate) for phylogenetic reconstruction,
in order to avoid artificially inflating genetic clusters because of repeated
patient sampling. Phylogenetic analysis was then performed separately for
each species using PhyML (44) (see the supplemental material). Chromo-
somally distinct strains were defined by partitioning each phylogeny with
a cutoff of �500 SNVs (see the supplemental material). On the basis of the
molecular clock of Enterobacteriaceae (1 to 20 SNVs/chromosome/year)
(6, 37, 45), we can be relatively confident that isolates belonging to distinct
strains will not have a shared ancestor within the time frame of blaKPC

dispersal, and the number of distinct strains thus provides a conservative
estimate of the number of distinct blaKPC acquisition events.

Long-read PacBio sequencing. For long-read sequencing, 17 isolates
were randomly chosen from the entire set of sequenced isolates (i.e., in-
cluding patient duplicates). Long-read sequencing and initial de novo as-
sembly were performed as previously described (37). Refinement of as-
semblies and closure of plasmid/chromosomal sequences was performed
as described in the supplemental material.

Since the isolates used for PacBio sequencing were randomly chosen
from the set of all Illumina-sequenced isolates, some of them represented
within-patient strain duplicates (see the previous section on phylogenetic
analysis) and were therefore not included in the phylogenetic reconstruc-
tion. For display purposes (Fig. 1), the blaKPC structure(s) determined by
long-read PacBio sequencing for each of these isolates is shown alongside
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Plasmid structure
determined from
short-read Illumina
sequencing:

Plasmid structure for isolates where
long-read PacBio sequencing performed:

Tn4401 variant blaKPC variant

Source of acquisition:

Contains Tn4401 Does not contain Tn4401

Contains Tn4401
Uncertain
Does not contain Tn4401

Tn4401b-1
Tn4401b-2
Tn4401a-1
Tn4401novel-1
Other

blaKPC-2
blaKPC-3
blaKPC-4

Local
Imported
Index

FIG 1 Diversity of bacterial species, strains, plasmids, and Tn4401 variants. For each species, a phylogeny was generated from mapping to a species-specific
chromosomal reference, after the deduplication of closely related isolates from the same patient (see Materials and Methods). Distinct strains are defined by a
cutoff of �500 SNVs (see Materials and Methods); strains found in more than one patient are shaded gray. Circles show plasmid “presence” as determined from
Illumina data, with the fill color indicating uncertainty about whether the plasmid contains blaKPC. Boxes show plasmid structures determined from long-read
PacBio sequencing of 17 randomly chosen isolates, as well as the previously sequenced isolates from index patient B (37). Where the PacBio-sequenced isolate was
excluded from the phylogeny as a patient duplicate, the plasmid structure of the corresponding closely related isolate from the same patient is shown. Tn4401 and
blaKPC variants (Table 2) are indicated by large and small squares, respectively. The likely sources of blaKPC acquisition, as determined from epidemiological data,
are indicated by text color.

Multiple Genetic Levels of blaKPC Mobility
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the representative isolate of the same strain from the same patient. In all of
the cases, the representative isolate has the same short-read plasmid pro-
file and Tn4401 variant as the PacBio-sequenced isolate.

Plasmid presence/absence classification. The index blaKPC plasmids
pKPC_UVA01 and pKPC_UVA02, together with the additional nine dis-
tinct blaKPC plasmids identified by long-read PacBio sequencing, were
used as references to determine plasmid presence profiles for each isolate
on the basis of the Illumina data. Plasmid presence was defined as �99%
sequence identity over �80% of the length of the reference sequence, as
determined by BLASTn comparison of each isolate’s de novo assembly
with the reference plasmid. The high identity cutoff was chosen to reduce
false positives from sequences that are only distantly related (and there-
fore unlikely to have a common ancestor within the time frame of the
outbreak), while the more permissive length cutoff allows for some rear-
rangement. It should be noted that the method does not take structural
continuity into account.

Analysis of Tn4401 flanking sequences. Where a plasmid was classi-
fied as being present in a particular isolate, it was not always certain to
contain Tn4401. The plasmid presence classification was further refined as
“containing Tn4401” if the isolate’s de novo assembly supported Tn4401
being present within the expected sequence context of that plasmid, “not
containing Tn4401” if the plasmid was assembled without Tn4401, or
“uncertain” if structure could not be determined from the de novo assem-
bly. The identification of novel Tn4401 insertion sites was also based on
the de novo assemblies. These methods are described in detail in the sup-
plemental material.

Variation in Tn4401. Tn4401 isoform classification was performed by
comparing each isolate’s de novo assembly with the previously described
isoform b reference sequence from EU176013.1 (29) using BLASTn to
identify structural variation. SNVs were determined by mapping to a ref-
erence consisting of pKPC_UVA01 plus a species-specific chromosome as
described above, followed by extraction of the Tn4401 region. Variation is
reported for all sites where at least one isolate had a nonreference call,
including any ambiguity at that site in other isolates. Ambiguity at non-
variable sites is not reported, which may result in an underestimate of true
variation. However, any resulting underestimation is likely to be very
minor, as the proportion of called sites, excluding deleted regions de-
scribed above, was �96% for all isolates.

Epidemiological classification. For epidemiologic analysis, patients
were assigned a one- or two-letter code for deidentification. Routine peri-
rectal surveillance cultures for silent colonization began in April 2009 (38,
40). Cases were classified as “imported” if they did not have any prior
admission to the University of Virginia Medical Center/Long-term Acute
Care Hospital (UVaMC) and either had a blaKPC-positive Enterobacteria-
ceae isolated within 48 h of admission or had a carbapenem-resistant
Enterobacteriaceae culture before transfer to UVaMC with a subsequent
isolate at UVaMC confirmed as blaKPC PCR positive. The index case was
also classified as imported. In the remaining cases, the source of blaKPC

acquisition was classified as “local.” The 48-h cutoff is arbitrary and may
result in some misclassification if patients either acquire blaKPC within the
first 48 h of admission or if blaKPC carriage/infection remains undetected
for �48 h; however, this is expected to be minimal (see the supplemental
material). Charts and patient contacts were reviewed by using bed tracing
data and the electronic medical record. This study was approved by the
University of Virginia Institutional Review Board (protocol 13558).

Transmission analysis. Possible patient-to-patient transmission
events were determined on the basis of having overlapping stays on the
same ward, as well as genetically related blaKPC isolates. The analysis was
performed separately for two different levels of genetic relatedness (strain
or Tn4401 variant). This is described in detail in the supplemental mate-
rial.

Nucleotide sequence accession number. Sequence data obtained in
this study have been deposited at the National Center for Biotechnology
Information under BioProject no. PRJNA246471.

RESULTS

There were 204 patients infected/colonized with blaKPC-positive
Enterobacteriaceae during the prospective sampling period, on the
basis of clinical and surveillance sampling. We performed short-
read Illumina sequencing of all 294 available isolates; 13 of them
were excluded because of quality issues (see Materials and Meth-
ods), leaving 281 isolates, from 182/204 (89%) patients, for anal-
ysis (see Table S1 in the supplemental material). In all 281 isolates,
blaKPC was carried within a complete or partial Tn4401 structure.

blaKPC is found in many different host strains, indicating fre-
quent HGT. There were 13 different species carrying blaKPC (Fig.
1). The four most prevalent species were Enterobacter cloacae (96
isolates from 80 patients), K. pneumoniae (94 isolates from 55
patients), Klebsiella oxytoca (35 isolates from 20 patients), and
Citrobacter freundii (30 isolates from 25 patients), each of which
showed substantial genetic diversity. Across all of the species,
there were a total of 62 distinct strains (�500 chromosomal SNVs;
see Materials and Methods). Of these, 18 strains were identified in
multiple patients and 44 were seen in only a single patient (Fig. 1),
with new strains continuing to appear throughout the study pe-
riod. The very recent emergence of blaKPC on an evolutionary time
scale (15) implies that each strain likely acquired blaKPC indepen-
dently, demonstrating frequent HGT between different strains
and species.

The blaKPC plasmids pKPC_UVA01 and pKPC_UVA02 are
widely dispersed. We hypothesized that the spread of blaKPC

could be due to conjugative transfer of the index blaKPC plasmids,
pKPC_UVA01 and pKPC_UVA02. With plasmid presence de-
fined as �99% sequence identity over �80% of the plasmid
length, 121 (66%) and 32 (18%) patients had isolates carrying
pKPC_UVA01 and pKPC_UVA02, respectively, corresponding to
39 and 5 distinct strains from 10 and 4 species, respectively (Fig.
1). Although the wide dispersal of these plasmids supports the
plasmid-mediated outbreak hypothesis, short-read data can be
limited in providing structural inferences when repetitive se-
quences are present, and for many isolates, it was not possible to
confirm that blaKPC was actually colocated within pKPC_UVA01
or pKPC_UVA02 (Fig. 1).

blaKPC is found in many different plasmids, indicating fre-
quent Tn4401 transposition. To further investigate blaKPC plas-
mid structures, we performed long-read PacBio sequencing of 17
isolates that were chosen at random from the 281 available, yield-
ing closed blaKPC structures in all of the cases. Fifteen isolates had
a single blaKPC plasmid, and two isolates had two blaKPC plasmids,
giving a total of 19 blaKPC plasmids from the 17 isolates (Table 1).
One isolate additionally had a chromosomal insertion of Tn4401.

From the analysis of Illumina data described above, 11 of these
17 isolates contained pKPC_UVA01. As expected, the PacBio as-
semblies revealed a pKPC_UVA01-like plasmid in each of these
isolates. However, only five of these pKPC_UVA01-like plasmids
actually contained blaKPC (Fig. 2). The other six pKPC_UVA01-
like plasmids lacked the entire Tn4401 element, which was present
on a different plasmid in these isolates. Importantly, this demon-
strates that plasmid presence (as defined by Illumina sequencing)
is an unreliable indicator of the mobile unit carrying blaKPC, as the
“presence” of pKPC_UVA01 was misleading in 55% (6/11) of the
randomly selected PacBio isolates.

After accounting for multiple variants of the same plasmid
backbone (e.g., the pKPC_UVA01-like plasmids described
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above), the 19 blaKPC plasmids identified through long-read se-
quencing represented 11 distinct plasmid structures (Table 1;
see Fig. S1 in the supplemental material). These consisted of
five pKPC_UVA01-like plasmids, two pKPC_UVA02-like plas-
mids, four pKPC_CAV1176-like plasmids, and eight blaKPC

plasmids that were each present in only a single PacBio-sequenced
isolate. Using Illumina data to assess the presence of each of these
11 distinct blaKPC plasmids across the entire set of isolates as de-
scribed above revealed varied patterns of plasmid presence (Fig.
1). However, in the majority of the cases, it was not possible to
determine from Illumina data whether these plasmids contained
blaKPC, so precise details regarding the distribution of blaKPC-con-
taining plasmids across the 281 isolates remain elusive.

Taken together, these results demonstrate a great deal of blaKPC

plasmid diversity, as 11 distinct blaKPC plasmids were identified
through long-read sequencing of 17 isolates. Given that these
isolates were randomly chosen, the total number of distinct
blaKPC plasmids across the entire set of 281 isolates is likely to
be much greater than this. Additional Tn4401 insertion sites
were identified from the subset of isolates where flanking se-
quences could be adequately assembled using short-read data,
further supporting this hypothesis (see Table S2 in the supple-
mental material). Therefore, HGT of the index blaKPC plasmids
(pKPC_UVA01 and pKPC_UVA02) only partially explains blaKPC

spread, and the large number of distinct blaKPC plasmids indicates
high levels of Tn4401 mobility.

Tn4401 is present within a Tn2-like element in many differ-
ent plasmids. In 7 of the 11 distinct, fully characterized blaKPC

plasmids, Tn4401 was surrounded by a sequence element related
to the blaTEM-1-containing transposon Tn2 (Fig. 3). In all of the
cases, the Tn4401 insertion site within the tnpA gene of Tn2 was
the same, with approximately 1 kb of flanking sequence on either
side of Tn4401 showing 100% identity, but the remainder of these
Tn2-like elements showed substantial variation. For example,
while the sequence surrounding Tn4401 in pKPC_CAV1176 was
identical to the reference Tn2* sequence, the Tn2-like element in
pKPC_CAV1043 was truncated. Additionally, pKPC_CAV1344
and pKPC_CAV1596-78 contained a Tn2 derivative, Tn1331, that
contains the additional resistance genes blaOXA-9, aadA1, and
aac(6=)-Ib and has been seen as a prior Tn4401 insertion site (46).

Tn4401 variation. There were five different structural variants
of Tn4401 (Table 2). The majority of the isolates, 230/281 (82%),
had the Tn4401b isoform, with the remaining isolates containing
Tn4401a (n � 8), a novel Tn4401 isoform with a 188-bp deletion
upstream of blaKPC (n � 39) or one of two truncated Tn4401
structures (n � 4). At the nucleotide level, there were seven sites
that were variable within Tn4401b. Three of these were located
within blaKPC, giving rise to three different blaKPC alleles, blaKPC-2

(n � 179), blaKPC-3 (n � 44), and blaKPC-4 (n � 5). All non-
Tn4401b isolates contained blaKPC-2. Taking all structural and nu-
cleotide variations into account, there were a total of 12 different

TABLE 1 blaKPC-containing structures ascertained from long-read PacBio sequencing of 17 randomly chosen isolates

Isolate Species Patienth Date blaKPC plasmid Size (bp) Groupa
Within-group
genetic change(s)b Tn4401 variant Flanking sequencesc

Tn2-like
elementd

CAV1344 K. pneumoniae EP Dec 2010 pKPC_CAV1344 176,497 Singleton NAi Tn4401b-1 GTTCT. . .GTTCT Yes
CAV1392 K. pneumoniae EU Mar 2011 pKPC_CAV1392 43,621 pKPC_UVA01 1 SNV Tn4401b-2 GTTCT. . .GTTCT Yes

NA (chromosomal) NA NA NA Tn4401b-2 AGATA. . .AGATA No
CAV1596 K. pneumoniae FK Apr 2012 pKPC_CAV1596-78 77,801 Singleton NA Tn4401b-2 GTTCT. . .GTTCT Yes

pKPC_CAV1596-97 96,702 Singleton NA Tn4401b-2 TATCG. . .TATCG No
CAV1099 K. oxytoca AU Apr 2009 pKPC_CAV1099 113,105 pKPC_UVA02 0 SNVs Tn4401b-1 ATGCA. . .GGCCAe No
CAV1335 K. oxytoca EQ Dec 2010 pKPC_CAV1335 113,105 pKPC_UVA02 0 SNVs Tn4401b-1 ATGCA. . .GGCCAe No
CAV1374 K. oxytoca ED Aug 2010 pKPC_CAV1374 332,956 Singleton NA Tn4401b-1 GTTCT. . .GTTCT Yes
CAV1043 E. asburiae L Mar 2008 pKPC_CAV1043 59,138 Singleton NA Tn4401b-2 GTTCT. . .GTTCT Yes
CAV1176 E. cloacae DN May 2010 pKPC_CAV1176 90,452 pKPC_CAV1176 0 SNVs Tn4401novel-1 GTTCT. . .GTTCT Yes
CAV1311 E. cloacae EO Jan 2011 pKPC_CAV1311 90,452 pKPC_CAV1176 0 SNVs Tn4401novel-1 GTTCT. . .GTTCT Yes
CAV1411 E. cloacae FC Jun 2011 pKPC_CAV1411 90,452 pKPC_CAV1176 1 SNV, 40-kb

inversion
Tn4401novel-1 GTTCT. . .GTTCT Yes

CAV1669 E. cloacae HV Aug 2012 pKPC_CAV1669 90,452 pKPC_CAV1176 40-kb inversion Tn4401novel-1 GTTCT. . .GTTCT Yes
CAV1668 E. cloacae HQ Aug 2012 pKPC_CAV1668 43,433 pKPC_UVA01 1 SNV, 188-bp

deletion
Tn4401novel-1 GTTCT. . .GTTCT Yes

CAV1321 C. freundii EG Nov 2010 pKPC_CAV1321-45 44,846 pKPC_UVA01 1,225-bp insertion Tn4401b-1 GTTCT. . .GTTCT Yes
pKPC_CAV1321-244 243,709 Singleton NA Tn4401b-1 GTTCT. . .GTTCT Yes

CAV1741 C. freundii ER Oct 2012 pKPC_CAV1741 129,196 pKPC_UVA01 14,960-bp
duplication,
70,615-bp
insertion

Tn4401b-1f GTTCT. . .GTTCT Yes

CAV1151 K. intermedia CD Sep 2009 pKPC_CAV1151 43,621 pKPC_UVA01 0 SNVsg Tn4401b-1 GTTCT. . .GTTCT Yes
CAV1320 E. aerogenes EL Nov 2010 pKPC_CAV1320 13,981 Singleton NA Tn4401b-1 TTGTT. . .TTGTT No
CAV1492 S. marcescens GL Dec 2011 pKPC_CAV1492 69,158 Singleton NA Tn4401b-8 TTTTT. . .TTTTT No

a Plasmids are defined as belonging to the same group if the sequences are largely identical, allowing for a small number of substitutions and/or rearrangements that may be
expected to occur within the outbreak time frame. Different groups have very limited homology outside the Tn4401 region, indicative of independent integrations into distinct
plasmid structures. “Singleton” indicates a plasmid backbone that is distinct from all of the others shown.
b Difference(s) from the reference sequence of that plasmid group, as specified in the previous column.
c Sequences immediately flanking Tn4401; generally expected to be identical because of 5-bp target site duplication during transposition (28).
d Tn4401 integrated into the tnpA gene of a Tn2-like element.
e No evidence of target site duplication.
f Two copies.
g It is noteworthy that this plasmid from K. intermedia CAV1151 is exactly identical to pKPC_UVA01 from K. pneumoniae CAV1016, with isolation dates 2 years apart.
h Anonymized patient identifiers are used; they do not represent initials or any other personal information.
i NA, not applicable.
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Tn4401 variants. However, most of these were very rare, with
seven found only in single patients.

blaKPC mobility has occurred within the hospital. On the ba-
sis of prior health care exposure, the blaKPC acquisition source
was classified as “imported” (likely acquisition prior to admis-
sion to our institution) for 15/182 (8%) patients and “local”
(likely acquisition within our institution) for 167/182 (92%)
patients (Fig. 1; see Materials and Methods). Imports were
more likely to be infected/colonized with K. pneumoniae, par-
ticularly ST258 (see Table S3 in the supplemental material),
consistent with previous reports of this strain being the domi-
nant blaKPC carrier in the United States (9, 47). Thus, most host
strain variation likely originated within the hospital via blaKPC

HGT. In support of this, 15/16 (94%) patients infected/colo-
nized with multiple strains/species had shared Tn4401 variants
within the patient (see Table S4 in the supplemental material),
suggesting recent blaKPC HGT. Notably, this included one pa-
tient with two different species carrying Tn4401b-3, which is
not found in any other patient.

There was also some evidence of recent within-strain Tn4401
transposition. From the isolates that were randomly chosen for
long-read sequencing, 4/17 (24%) had multiple Tn4401 copies
(Table 1). If we assume that this randomly chosen subset is repre-
sentative, this extrapolates to approximately 66/281 isolates across
the whole data set. However, only 2/281 isolates had multiple
Tn4401 variants (Tn4401b-5; Table 2), indicating that many iso-
lates likely had multiple copies of the same Tn4401 variant, con-
sistent with recent Tn4401 transposition.

Taken together, these results indicate that much of the genetic
diversity observed is due to recent blaKPC mobility, likely within
the hospital ecosystem over the described 5-year outbreak.

Direct patient-to-patient transmission does not explain
blaKPC acquisition. To further investigate the blaKPC acquisition
source, we combined epidemiological and genetic data to trace
possible transmission chains at two different genetic levels. We
considered possible transmission events where the donor and re-
cipient were on the same ward at the same time and carried the
same host strain or Tn4401 variant. Considering only “local” ac-
quisitions (see above), 48/167 (29%) patients had ward contact
with another patient carrying the same blaKPC-positive strain (Fig.
4, top). A greater proportion of the patients, 106/167 (63%), had
ward contact with another patient carrying the same Tn4401 vari-
ant. However, as Tn4401b-1 is very common (66% of the pa-
tients), these inferred transmissions may be spurious. With pa-
tients carrying this common variant excluded, only 15/50 (30%)
had ward contact with another patient carrying the same Tn4401
variant (Fig. 4, bottom). Therefore, both genetic levels (strain or
Tn4401 variant) demonstrated plausible transmissions for only a
minority of the patients, indicating that direct patient-to-patient
transmission is not the dominant mode of blaKPC acquisition or
that there are many silently colonized patients below the limit of
detection by our surveillance methods (40, 48).

DISCUSSION

Here we have demonstrated high levels of genetic diversity in
KPC-producing Enterobacteriaceae within a single institution over
5 years. This diversity occurs at multiple genetic levels, revealing a
complex evolutionary history of the blaKPC gene involving many
different host strains and plasmids.

In 7/11 distinct blaKPC plasmids identified through long-read
sequencing, Tn4401 was located within a Tn2-like element. As
these Tn2-like elements differed substantially from each other

10 kb

bla
KPC

bla
KPC

bla
KPC

bla
KPC

bla
KPC

bla
KPC

bla
KPC

pCAV1344-40

pCAV1374-34

pCAV1176-34

pCAV1311-34

pCAV1411-34

pCAV1669-34

pKPC_UVA01

pKPC_CAV1151

pKPC_CAV1392

pKPC_CAV1668

pKPC_CAV1321-45

pKPC_CAV1741

pKPC_UVA01-like plasmids
with blaKPC

pKPC_UVA01-like plasmids
without blaKPC Antibiotic resistance

Transposition / Recombination

Conjugation / Type IV secretion

Replication

Hypothetical protein

Other

Tn4401

FIG 2 pKPC_UVA01-like plasmids identified through long-read PacBio sequencing. The reference pKPC_UVA01 sequence is shown together with all 11
pKPC_UVA01-like plasmids identified through long-read PacBio sequencing, including the 6 that do not contain blaKPC. Arrows indicate predicted open reading
frames; Tn4401 is purple. Pink shading indicates regions of identity between adjacent sequences, and SNVs are indicated by red lines.

Sheppard et al.

3772 aac.asm.org June 2016 Volume 60 Number 6Antimicrobial Agents and Chemotherapy

 on M
ay 25, 2016 by U

C
 London Library S

ervices
http://aac.asm

.org/
D

ow
nloaded from

 

http://aac.asm.org
http://aac.asm.org/


(Fig. 3), it is unlikely that this arose via the transposition of a
composite Tn4401-Tn2-like structure. Instead, it suggests that
Tn4401 has been repeatedly incorporated into pre-existing Tn2-
like elements, which are known to be widespread, and genetically
divergent, in Enterobacteriaceae (49, 50). However, the insertion
site was identical in all of the cases, yet Tn4401 has been reported
to have no insertion site specificity (28), suggesting that this was
not facilitated by a standard transposition mechanism. Therefore,
we suggest that this is most likely mediated by homologous re-
combination with other Tn2-like elements following an initial in-
tegration event, as recently suggested for another multidrug resis-
tance gene, blaCTX-M-15 (51). This implies that Tn4401 mobility
may have been enhanced via integration into a second, already
widely dispersed, transposon. As the Tn4401-Tn2-like structure
was present in the index case isolate (CAV1016, August 2007), we
presume that the initial transposition of Tn4401 into a Tn2-like
element occurred prior to entry into our hospital system. In sup-
port of this, one particular Tn2-like element, Tn1331, has been
previously reported to contain Tn4401 (in exactly the same posi-
tion within the tnpA gene as that described here) (21, 46, 52, 53),
including one report describing a K. pneumoniae isolated in 2005,
which predates blaKPC in our institution (46). We are not aware of
any previous reports describing Tn4401 within a non-Tn1331
Tn2-like element.

The prevalence of Tn4401 insertions within Tn2-like elements
also has important implications with regard to plasmid tracking.
We previously published a method for arbitrary PCR to track the
flanking regions around the Tn4401 element, as well as a PCR
method to assay the presence of what we had wrongly assumed
was a single plasmid, pKPC_UVA01. This PCR assay targeted the
immediate Tn4401 insertion site within a Tn2-like element (54),
which we have demonstrated here is present in many different
plasmids, highlighting that PCR assay results, and indeed, those of
any partial typing methods, need to be interpreted with a great
deal of caution. We were further misled by the analysis of short-
read whole-genome sequencing data that indicated the presence
of pKPC_UVA01 in the majority of our isolates. Taking these
findings together, it was tempting to conclude that horizontal
transfer of pKPC_UVA01 was responsible for the great majority of
the blaKPC carriage at our institution. However, long-read se-
quencing refuted this, revealing a far more complex picture.

More generally, this highlights certain limitations of plasmid
reconstruction from short-read data. To illustrate by way of ex-
ample, there were five isolates where long-read sequencing re-
vealed pKPC_UVA01-like plasmids that were identical to the ref-
erence pKPC_UVA01 sequence apart from the absence of Tn4401
and the associated 5-bp target site duplication (Fig. 2). We pre-
sume that in these lineages, blaKPC may have been initially ac-
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quired via HGT of pKPC_UVA01, with subsequent homologous
recombination transferring Tn4401 from pKPC_UVA01 to a dif-
ferent plasmid containing a Tn2-like element. In each of these five
isolates, there are multiple Tn2-like elements that have 100% se-
quence identity over approximately 1 kb on either side of the
Tn4401 insertion site. As this is longer than the fragment length
used for paired-end sequencing, it is not possible to resolve the
plasmid context of blaKPC by using short-read data. Importantly,
any reference-based method for plasmid reconstruction (e.g., in
this case, using the pKPC_UVA01 reference sequence to infer the
presence of the plasmid in each isolate) is liable to produce mis-
leading results. More generally, it is exactly the repetitive regions
that cannot be resolved by using short-read data that could be
expected to be involved in plasmid rearrangements, either
through homologous recombination, as suggested here, or by vir-
tue of the fact that transposable elements are often present in
multiple copies. Therefore, having short-read data that are con-
sistent with a known plasmid structure, even within the same out-
break, should not be sufficient to conclude that that structure is
present, if the data are also consistent with an alternative struc-
ture. As several recent studies have utilized reference-based ap-
proaches for plasmid assembly/inference (33, 34), our results in-
dicate that results obtained by any such methods should be
interpreted with extreme caution.

Across the blaKPC-positive patients, there was large variation in
both host strains and blaKPC plasmids, with Tn4401 being the larg-
est genetic unit that was consistently present. Therefore, surveil-
lance strategies aimed at tracking individual strains or plasmids
could be misleading, and it may be more appropriate to focus on
Tn4401. However, we found limited variation within the trans-
poson, as Tn4401 sequences from 121/182 (66%) patients were
identical to the index case (Table 2). This lack of variation implies
that even the highest-resolution genetic methods may be insuffi-
cient for determining specific transmission routes. Even so, we
have demonstrated that only a minority of blaKPC acquisition

events can be explained by direct patient-to-patient transmission.
Future studies should therefore contemporaneously investigate
the possible involvement of unsampled reservoirs (e.g., environ-
mental or silent colonization by additional carriers).

There are several limitations to this study. Because of the cost
and effort involved in long-read sequencing, we were able to re-
solve only a minority of blaKPC plasmids. This means that al-
though we have a compelling indicator of the diversity created by
mobile genetic elements within a single hospital over a 5-year
period, we are limited in the ability to genetically resolve pathways
of blaKPC mobility between host strains and plasmid vectors, even
within a single patient. We also speculate about the effect of
Tn4401 insertion into Tn2-like elements, but future in vitro stud-
ies could be used to illuminate the effect of this composite struc-
ture on Tn4401 mobility. Another issue is the limit of detection of
the culture-based screening methods and phenotypic tests used to
identify blaKPC-positive clinical isolates. No single perirectal
screening method to capture asymptomatically colonized patients
is perfect (40, 48, 55), including the method used here, which has
a sensitivity of �86% (40). In recognition of the fact that blaKPC

expression and carbapenem susceptibility may be variable in dif-
ferent host species, and in the context of additional resistance
mechanisms such as porin alterations, we lowered our surveil-
lance thresholds to include all of the possible ESBL-producing
organisms that subsequently tested positive in phenotypic carbap-
enemase tests. Even with this mitigation strategy, we anticipate
that we have missed a proportion of the blaKPC-positive Entero-
bacteriaceae isolates that may be contributing to the evolution and
transmission of blaKPC within our institution. Overall however,
our broad screening approach across the members of the family
Enterobacteriaceae has highlighted the importance of species other
than E. coli and Klebsiella spp. in the transmission of blaKPC, with
implications for the current CDC rectal surveillance protocol.

In conclusion, our detailed genetic analysis of the evolutionary
events occurring in the early stages of antimicrobial resistance

TABLE 2 Tn4401 variations

Tn4401
varianta Structural isoform (29) SNV(s)b blaKPC variant

No. of:

Patients Isolates Strains

Tn4401b-1c b blaKPC-2 121 176 42
Tn4401b-2 b 8015C¡Td blaKPC-3 22 40 19
Tn4401b-3 b 8015C¡T, 9621T¡C blaKPC-3 1 3 2
Tn4401b-4 b 7199T¡A, 8015C¡T, 9621T¡C blaKPC-3 1 1 1
Tn4401b-5 b 8015Ne blaKPC-2/blaKPC-3 1 2 1
Tn4401b-6 b 7509C¡G, 7917T¡Gf blaKPC-4 1 1 1
Tn4401b-7 b 6800T¡C, 7509C¡G, 7917T¡G blaKPC-4 1 4 1
Tn4401b-8 b 9663T¡C blaKPC-2 1 3 1
Tn4401a-1 a (del 7020-7118) blaKPC-2 5 8 1
Tn4401novel-1 Novel (del 6919-7106) blaKPC-2 28 39 2
Tn4401trunc-1 Truncated (del 1-6654) blaKPC-2 2 3 1
Tn4401trunc-2 Truncated (del 1-6727) 6800Ng blaKPC-2 1 1 1
a Variants are named such that letters indicate previously described structural isoforms and numbers indicate nucleotide level variations (SNVs) within an isoform (apart from the
truncated Tn4401 structures, where numbers are used to indicate different truncation locations).
b With respect to Tn4401b-1, which was considered the reference Tn4401 sequence in this study.
c Tn4401b-1 differs from the reference isoform b sequence in EU176013.1 by the following 14 SNVs: 4939C¡G, 4989C¡T, 5099A¡T, 5131A¡G, 5154T¡G, 5185G¡C,
5255C¡A, 5361G¡C, 5375C¡G, 5390A¡C, 5996G¡A, 5998G¡C, 8112C¡A, 8113A¡C.
d This substitution converts blaKPC-2 to blaKPC-3.
e Quality filters failed at this position because of a mixture of reads supporting C and T (i.e., Tn4401b-5 actually represents a mixture of Tn4401b-1 and Tn4401b-2).
f These two substitutions convert blaKPC-2 to blaKPC-4.
g Quality filters failed at this position because of a lack of reads mapped in the reverse direction. All of the reads mapped in the forward direction supported a reference (T) call.
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gene emergence in a single institution identifies several distinct
processes occurring at high frequency (Fig. 5). First, the presence
of shared blaKPC-containing strains in different patients reflects
traditional (clonal) outbreak models. Second, blaKPC mobility be-
tween strains/species is facilitated by promiscuous blaKPC plas-
mids such as pKPC_UVA01. Third, blaKPC transfer between plas-

mids is likely enhanced by homologous recombination between
Tn2-like elements, facilitating the movement of Tn4401 from one
plasmid to another. Finally, blaKPC mobility is also enabled by
standard Tn4401 transposition. Rather than a single process dom-
inating, resistance dissemination is driven by a combination of
these factors, with mobility occurring at multiple nested genetic
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levels, analogous to a Russian doll set. This has resulted in a high
level of diversity in KPC-producing Enterobacteriaceae, at multi-
ple genetic levels. As blaKPC prevalence continues to increase, so
will this genetic diversity, inevitably resulting in a wider variety of
more pathogenic strains carrying blaKPC.

Our results indicate that the current standard practice of
screening only specific species for blaKPC carriage is likely to ham-
per surveillance efforts by grossly underestimating its true preva-
lence. Instead of the traditional view of an outbreak involving a
single pathogenic strain, we propose that for KPC-producing En-
terobacteriaceae, and possibly more generally, we should instead
adopt the view of a “gene-based outbreak,” with surveillance strat-
egies tracking the resistance gene itself rather than a specific host
strain.
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