50 research outputs found

    Functional material features of Bombyx mori silk light versus heavy chain proteins

    Get PDF
    Bombyx mori (BM) silk fibroin is composed of two different subunits; heavy chain and light chain fibroin linked by a covalent disulphide bond. Current methods of separating the two silk fractions is complicated and produces inadequate quantities of the isolated components for the study of the individual light and heavy chain silks with respect to new materials. We report a simple method of separating silk fractions using formic acid. The formic acid treatment partially releases predominately the light chain fragment (soluble fraction) and then the soluble fraction and insoluble fractions can be converted into new materials. The regenerated original (total) silk fibroin and the separated fractions (soluble vs. insoluble) had different molecular weights and showed distinctive pH stabilities against aggregation/precipitation based on particle charging. All silk fractions could be electrospun to give fibre mats with viscosity of the regenerated fractions being the controlling factor for successful electrospinning. The silk fractions could be mixed to give blends with different proportions of the two fractions to modify the diameter and uniformity of the electrospun fibres formed. The soluble fraction containing the light chain was able to modify the viscosity by thinning the insoluble fraction containing heavy chain fragments, perhaps analogous to its role in natural fibre formation where the light chain provides increased mobility and the heavy chain producing shear thickening effects. The simplicity of this new separation method should enable access to these different silk protein fractions and accelerate the identification of methods, modifications and potential applications of these materials in biomedical and industrial applications

    Interactions between Spider Silk and Cells – NIH/3T3 Fibroblasts Seeded on Miniature Weaving Frames

    Get PDF
    Native spider silk does not require any modification to its application as a biomaterial that can rival any artificial material in terms of cell growth promoting properties. We could show adhesion mechanics on intracellular level. Additionally, proliferation kinetics were higher than in enzymatically digested controls, indicating that spider silk does not require modification. Recent findings concerning reduction of cell proliferation after exposure could not be met. As biotechnological production of the hierarchical composition of native spider silk fibres is still a challenge, our study has a pioneer role in researching cellular mechanics on native spider silk fibres

    Artificial Skin – Culturing of Different Skin Cell Lines for Generating an Artificial Skin Substitute on Cross-Weaved Spider Silk Fibres

    Get PDF
    Background: In the field of Plastic Reconstructive Surgery the development of new innovative matrices for skin repair is in urgent need. The ideal biomaterial should promote attachment, proliferation and growth of cells. Additionally, it should degrade in an appropriate time period without releasing harmful substances, but not exert a pathological immune response. Spider dragline silk from Nephila spp meets these demands to a large extent. Methodology/Principal Findings: Native spider dragline silk, harvested directly out of Nephila spp spiders, was woven on steel frames. Constructs were sterilized and seeded with fibroblasts. After two weeks of cultivating single fibroblasts, keratinocytes were added to generate a bilayered skin model, consisting of dermis and epidermis equivalents. For the next three weeks, constructs in co-culture were lifted on an originally designed setup for air/liquid interface cultivation. After the culturing period, constructs were embedded in paraffin with an especially developed program for spidersilk to avoid supercontraction. Paraffin cross-sections were stained in Haematoxylin & Eosin (H&E) for microscopic analyses. Conclusion/Significance: Native spider dragline silk woven on steel frames provides a suitable matrix for 3 dimensional skin cell culturing. Both fibroblasts and keratinocytes cell lines adhere to the spider silk fibres and proliferate. Guided by the spider silk fibres, they sprout into the meshes and reach confluence in at most one week. A well-balanced, bilayered cocultivation in two continuously separated strata can be achieved by serum reduction, changing the medium conditions and the cultivation period at the air/liquid interphase. Therefore spider silk appears to be a promising biomaterial for the enhancement of skin regeneration

    Wound dressings for a proteolytic-rich environment

    Get PDF
    Wound dressings have experienced continuous and significant changes over the years based on the knowledge of the biochemical events associated with chronic wounds. The development goes from natural materials used to just cover and conceal the wound to interactive materials that can facilitate the healing process, addressing specific issues in non-healing wounds. These new types of dressings often relate with the proteolytic wound environment and the bacteria load to enhance the healing. Recently, the wound dressing research is focusing on the replacement of synthetic polymers by natural protein materials to delivery bioactive agents to the wounds. This article provides an overview on the novel protein-based wound dressings such as silk fibroin keratin and elastin. The improved properties of these dressings, like the release of antibiotics and growth factors, are discussed. The different types of wounds and the effective parameters of healing process will be reviewed

    Biosynthesis of emulsan biopolymers from agro-based feedstocks

    Get PDF
    Aims: The need for biocompatible, biodegradable, and versatile biopolymers permeates many fields including environmental and food technology. The goal of the study presented here is to establish the utility of agricultural oils as an inexpensive carbon source to produce materials useful for biomedical materials and offer positive attributes in terms of green chemistry. Methods and Results: Structural variants of the complex acylated polysaccharide, emulsan, secreted from Acinetobacter venetianus RAG‐1, were biosynthesized in cultures supplemented with agricultural feedstocks to examine the feasibility of conversion of these substrates into value‐added biopolymers. Acinetobacter venetianus produced chemically and biologically distinct emulsan variants in culture on soy molasses and tallow oil. These variants possess significant biological function, including macrophage activation and adjuvant activity, in similar range to that observed for the standard emulsan formed on ethanol‐fed A. venetianus. Conclusions: The results indicate that this novel family of biopolymers can be produced in significant quantities from the readily available renewable agricultural feedstocks and the resulting structures and functions can be correlated to the chemistry of these feedstocks. Significance and Impact of the Study: The significant quantities of agricultural oils produced annually represent an untapped source for bioconversion to valuable products. The results of this study confirm that the important polymer emulsan can be synthesized from this inexpensive carbon source.Fil: Panilaitis, B.. Tufts University; Estados UnidosFil: Castro, Guillermo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina. Tufts University; Estados UnidosFil: Solaiman, D.. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Kaplan, D. L.. Tufts University; Estados Unido

    Bacterial Cellulose as a Potential Scaffold for Tissue Engineering of Cartilage

    No full text
    Tissue constructs for cartilage with native mechanical properties have not been described to date. To address this need the bacterial cellulose (BC) secreted by Gluconacetobacter xylinus (= Acetobacter xylinum) was explored as a novel scaffold material due to its unusual material properties and degradability. Native and chemically modified BC materials were evaluated using bovine chondrocytes. The results indicate that unmodified BC supports chondrocyte proliferation at levels of approximately 50% of the collagen type II substrate while providing significant advantages in terms of mechanical properties. Compared to tissue culture plastic and calcium alginate, unmodified BC showed significantly higher levels of chondrocyte growth. Chemical sulfation and phosphorylation of the BC, performed to mimic the glucosaminoglycans of native cartilage, did not enhance chondrocyte growth while the porosity of the material did affect chondrocyte viability. The BC did not induce significant activation of proinflammatory cytokine production during in vitro macrophage screening. Hence, unmodified BC was further explored using human chondrocytes. TEM analysis and RNA expression of the collagen II from human chondrocytes indicated that unmodified BC supports proliferation of chondrocytes. In addition, ingrowth of chondrocytes into the scaffold was verified by TEM. The results suggest the potential for this biomaterial as a scaffold for tissue engineering of cartilag

    Materials and Fabrication Processes for Transient and Bioresorbable High-Performance Electronics

    No full text
    Materials and fabrication procedures are described for bioresorbable transistors and simple integrated circuits, in which the key processing steps occur on silicon wafer substrates, in schemes compatible with methods used in conventional microelectronics. The approach relies on an unusual type of silicon on insulator wafer to yield devices that exploit ultrathin sheets of monocrystalline silicon for the semiconductor, thin fi lms of magnesium for the electrodes and interconnects, silicon dioxide and magnesium oxide for the dielectrics, and silk for the substrates. A range of component examples with detailed measurements of their electrical characteristics and dissolution properties illustrate the capabilities. In vivo toxicity tests demonstrate biocompatibility in sub-dermal implants. The results have signifi cance for broad classes of water-soluble, "transient" electronic devices.1981001sciescopu
    corecore