9 research outputs found

    Screening non-coding RNAs in transcriptomes from neglected species using PORTRAIT: case study of the pathogenic fungus Paracoccidioides brasiliensis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transcriptome sequences provide a complement to structural genomic information and provide snapshots of an organism's transcriptional profile. Such sequences also represent an alternative method for characterizing neglected species that are not expected to undergo whole-genome sequencing. One difficulty for transcriptome sequencing of these organisms is the low quality of reads and incomplete coverage of transcripts, both of which compromise further bioinformatics analyses. Another complicating factor is the lack of known protein homologs, which frustrates searches against established protein databases. This lack of homologs may be caused by divergence from well-characterized and over-represented model organisms. Another explanation is that non-coding RNAs (ncRNAs) may be caught during sequencing. NcRNAs are RNA sequences that, unlike messenger RNAs, do not code for protein products and instead perform unique functions by folding into higher order structural conformations. There is ncRNA screening software available that is specific for transcriptome sequences, but their analyses are optimized for those transcriptomes that are well represented in protein databases, and also assume that input ESTs are full-length and high quality.</p> <p>Results</p> <p>We propose an algorithm called PORTRAIT, which is suitable for ncRNA analysis of transcriptomes from poorly characterized species. Sequences are translated by software that is resistant to sequencing errors, and the predicted putative proteins, along with their source transcripts, are evaluated for coding potential by a support vector machine (SVM). Either of two SVM models may be employed: if a putative protein is found, a protein-dependent SVM model is used; if it is not found, a protein-independent SVM model is used instead. Only <it>ab initio </it>features are extracted, so that no homology information is needed. We illustrate the use of PORTRAIT by predicting ncRNAs from the transcriptome of the pathogenic fungus <it>Paracoccidoides brasiliensis </it>and five other related fungi.</p> <p>Conclusion</p> <p>PORTRAIT can be integrated into pipelines, and provides a low computational cost solution for ncRNA detection in transcriptome sequencing projects.</p

    Differentiating Protein-Coding and Noncoding RNA: Challenges and Ambiguities

    Get PDF
    The assumption that RNA can be readily classified into either protein-coding or non-protein–coding categories has pervaded biology for close to 50 years. Until recently, discrimination between these two categories was relatively straightforward: most transcripts were clearly identifiable as protein-coding messenger RNAs (mRNAs), and readily distinguished from the small number of well-characterized non-protein–coding RNAs (ncRNAs), such as transfer, ribosomal, and spliceosomal RNAs. Recent genome-wide studies have revealed the existence of thousands of noncoding transcripts, whose function and significance are unclear. The discovery of this hidden transcriptome and the implicit challenge it presents to our understanding of the expression and regulation of genetic information has made the need to distinguish between mRNAs and ncRNAs both more pressing and more complicated. In this Review, we consider the diverse strategies employed to discriminate between protein-coding and noncoding transcripts and the fundamental difficulties that are inherent in what may superficially appear to be a simple problem. Misannotations can also run in both directions: some ncRNAs may actually encode peptides, and some of those currently thought to do so may not. Moreover, recent studies have shown that some RNAs can function both as mRNAs and intrinsically as functional ncRNAs, which may be a relatively widespread phenomenon. We conclude that it is difficult to annotate an RNA unequivocally as protein-coding or noncoding, with overlapping protein-coding and noncoding transcripts further confounding this distinction. In addition, the finding that some transcripts can function both intrinsically at the RNA level and to encode proteins suggests a false dichotomy between mRNAs and ncRNAs. Therefore, the functionality of any transcript at the RNA level should not be discounted

    The Genetic Signatures of Noncoding RNAs

    Get PDF
    The majority of the genome in animals and plants is transcribed in a developmentally regulated manner to produce large numbers of non–protein-coding RNAs (ncRNAs), whose incidence increases with developmental complexity. There is growing evidence that these transcripts are functional, particularly in the regulation of epigenetic processes, leading to the suggestion that they compose a hitherto hidden layer of genomic programming in humans and other complex organisms. However, to date, very few have been identified in genetic screens. Here I show that this is explicable by an historic emphasis, both phenotypically and technically, on mutations in protein-coding sequences, and by presumptions about the nature of regulatory mutations. Most variations in regulatory sequences produce relatively subtle phenotypic changes, in contrast to mutations in protein-coding sequences that frequently cause catastrophic component failure. Until recently, most mapping projects have focused on protein-coding sequences, and the limited number of identified regulatory mutations have been interpreted as affecting conventional cis-acting promoter and enhancer elements, although these regions are often themselves transcribed. Moreover, ncRNA-directed regulatory circuits underpin most, if not all, complex genetic phenomena in eukaryotes, including RNA interference-related processes such as transcriptional and post-transcriptional gene silencing, position effect variegation, hybrid dysgenesis, chromosome dosage compensation, parental imprinting and allelic exclusion, paramutation, and possibly transvection and transinduction. The next frontier is the identification and functional characterization of the myriad sequence variations that influence quantitative traits, disease susceptibility, and other complex characteristics, which are being shown by genome-wide association studies to lie mostly in noncoding, presumably regulatory, regions. There is every possibility that many of these variations will alter the interactions between regulatory RNAs and their targets, a prospect that should be borne in mind in future functional analyses

    Identification and comparative analysis of ncRNAs in human, mouse and zebrafish indicate a conserved role in regulation of genes expressed in brain

    Get PDF
    ncRNAs(non-coding RNAs), in particular long ncRNAs, represent a significant proportion of the vertebrate transcriptome and probably regulate many biological processes. We used publically available ESTs(Expressed Sequence Tags) from human, mouse and zebrafish and a previously published analysis pipeline to annotate and analyze the vertebrate nonprotein-coding transcriptome. Comparative analysis confirmed some previously described features of intergenic ncRNAs, such as a positionally biased distribution with respect to regulatory or development related protein-coding genes, and weak but clear sequence conservation across species. Significantly, comparative analysis of developmental and regulatory genes proximate to long ncRNAs indicated that the only conserved relationship of these genes to neighbor long ncRNAs was with respect to genes expressed in human brain, suggesting a conserved, ncRNA cis-regulatory network in vertebrate nervous system development. Most of the relationships between long ncRNAs and proximate coding genes were not conserved, providing evidence for the rapid evolution of species-specific gene associated long ncRNAs. We have reconstructed and annotated over 130,000 long ncRNAs in these three species, providing a significantly expanded number of candidates for functional testing by the research community.Zhipeng Qu and David L. Adelso

    The rise of regulatory RNA

    No full text

    The transcriptional landscape of the mammalian genome

    No full text
    This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and polyadenylation. There are 16,247 new mouse protein-coding transcripts, including 5154 encoding previously unidentified proteins. Genomic mapping of the transcriptome reveals transcriptional forests, with overlapping transcription on both strands, separated by deserts in which few transcripts are observed. The data provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development

    Long noncoding RNAs in development and cancer: potential biomarkers and therapeutic targets

    No full text

    Imprinted X chromosome inactivation: evolution of mechanisms in distantly related mammals

    No full text
    corecore