4 research outputs found

    Lack of association of rs3798220 with small apolipoprotein(a) isoforms and high lipoprotein(a) levels in East and Southeast Asians

    Get PDF
    OBJECTIVE : The variant allele of rs3798220 in the apolipoprotein(a) gene (LPA) is used to assess the risk for coronary artery disease (CAD) in Europeans, where it is associated with short alleles of the Kringle IV-2 (KIV-2) copy number variation (CNV) and high lipoprotein(a) (Lp(a)) concentrations. No association of rs3798220 with CAD was detected in a GWAS of East Asians. Our study investigated the association of rs3798220 with Lp(a) concentrations and KIV-2 CNV size in non-European populations to explain the missing association of the variant with CAD in Asians. METHODS : We screened three populations from Africa and seven from Asia by TaqMan Assay for rs3798220 and determined KIV-2 CNV sizes of LPA alleles by pulsed-field gel electrophoresis (PFGE). Additionally, CAD cases from India were analysed. To investigate the phylogenetic origin of rs3798220, 40 LPA alleles from Chinese individuals were separated by PFGE and haplotyped for further SNPs. RESULTS : The variant was not found in Africans. Allele frequencies in East and Southeast Asians ranged from 2.9% to 11.6%, and were very low (0.15%) in CAD cases and controls from India. The variant was neither associated with short KIV-2 CNV alleles nor elevated Lp(a) concentrations in Asians. CONCLUSION : Our study shows that rs3798220 is no marker for short KIV-2 CNV alleles and high Lp(a) in East and Southeast Asians, although the haplotype background is shared with Europeans. It appears unlikely that this SNP confers atherogenic potential on its own. Furthermore, this SNP does not explain Lp(a) attributed risk for CAD in Asian Indians.http://www.elsevier.com/locate/atherosclerosis2016-10-31hb2016Chemical Patholog

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Multi-messenger Observations of a Binary Neutron Star Merger

    No full text
    International audienceOn 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌1.7 s\sim 1.7\,{\rm{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40−8+8{40}_{-8}^{+8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26  M⊙\,{M}_{\odot }. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌40 Mpc\sim 40\,{\rm{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌9\sim 9 and ∌16\sim 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore