14 research outputs found

    Multiplexed RNAi therapy against brain tumor-initiating cells via lipopolymeric nanoparticle infusion delays glioblastoma progression

    Get PDF
    Brain tumor-initiating cells (BTICs) have been identified as key contributors to therapy resistance, recurrence, and progression of diffuse gliomas, particularly glioblastoma (GBM). BTICs are elusive therapeutic targets that reside across the blood–brain barrier, underscoring the urgent need to develop novel therapeutic strategies. Additionally, intratumoral heterogeneity and adaptations to therapeutic pressure by BTICs impede the discovery of effective anti-BTIC therapies and limit the efficacy of individual gene targeting. Recent discoveries in the genetic and epigenetic determinants of BTIC tumorigenesis offer novel opportunities for RNAi-mediated targeting of BTICs. Here we show that BTIC growth arrest in vitro and in vivo is accomplished via concurrent siRNA knockdown of four transcription factors (SOX2, OLIG2, SALL2, and POU3F2) that drive the proneural BTIC phenotype delivered by multiplexed siRNA encapsulation in the lipopolymeric nanoparticle 7C1. Importantly, we demonstrate that 7C1 nano-encapsulation of multiplexed RNAi is a viable BTIC-targeting strategy when delivered directly in vivo in an established mouse brain tumor. Therapeutic potential was most evident via a convection-enhanced delivery method, which shows significant extension of median survival in two patient-derived BTIC xenograft mouse models of GBM. Our study suggests that there is potential advantage in multiplexed targeting strategies for BTICs and establishes a flexible nonviral gene therapy platform with the capacity to channel multiplexed RNAi schemes to address the challenges posed by tumor heterogeneity. Keywords: siRNA; lipopolymeric nanoparticle; glioblastoma transcription factor; brain tumor-initiating; cells; convection-enhanced deliver

    From tests of discrete symmetries to medical imaging with J-PET detector

    Get PDF
    We present results on CPT symmetry tests in decays of positronium performed with the precision at the level of 104^{-4}, and positronium images determined with the prototype of the J-PET tomograph. The first full-scale prototype apparatus consists of 192 plastic scintillator strips readout from both ends with vacuum tube photomultipliers. Signals produced by photomultipliers are probed in the amplitude domain and are digitized by FPGA-based readout boards in triggerless mode. In this contribution we report on the first two- and three-photon positronium images and tests of CPT symmetry in positronium decays

    Multi-machine scaling of the main SOL parallel heat flux width in tokamak limiter plasmas

    Get PDF

    HIF-1α Is a Metabolic Switch between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma

    No full text
    Summary: The mechanisms by which regulatory T cells (Tregs) migrate to and function within the hypoxic tumor microenvironment are unclear. Our studies indicate that specific ablation of hypoxia-inducible factor 1α (HIF-1α) in Tregs results in enhanced CD8+ T cell suppression versus wild-type Tregs under hypoxia, due to increased pyruvate import into the mitochondria. Importantly, HIF-1α-deficient Tregs are minimally affected by the inhibition of lipid oxidation, a fuel that is critical for Treg metabolism in tumors. Under hypoxia, HIF-1α directs glucose away from mitochondria, leaving Tregs dependent on fatty acids for mitochondrial metabolism within the hypoxic tumor. Indeed, inhibition of lipid oxidation enhances the survival of mice with glioma. Interestingly, HIF-1α-deficient-Treg mice exhibit significantly enhanced animal survival in a murine model of glioma, due to their stymied migratory capacity, explaining their reduced abundance in tumor-bearing mice. Thus HIF-1α acts as a metabolic switch for Tregs between glycolytic-driven migration and oxidative phosphorylation-driven immunosuppression. : Miska et al. demonstrate that regulatory T cell (Treg)-specific depletion of HIF-1α promotes enhanced immune suppression at the cost of migration under hypoxic conditions. Within the hypoxic brain-tumor environment, Tregs are uniquely able to metabolize extracellular free fatty acids to promote their immunosuppressive functionality, which can be targeted in vivo. Keywords: regulatory T cell, glioblastoma, migration, glycolysis, fatty acid oxidation, oxidative phosphorylation, immunosuppressio

    Multiplexed RNAi therapy against brain tumor-initiating cells via lipopolymeric nanoparticle infusion delays glioblastoma progression

    No full text
    Brain tumor-initiating cells (BTICs) have been identified as key contributors to therapy resistance, recurrence, and progression of diffuse gliomas, particularly glioblastoma (GBM). BTICs are elusive therapeutic targets that reside across the blood–brain barrier, underscoring the urgent need to develop novel therapeutic strategies. Additionally, intratumoral heterogeneity and adaptations to therapeutic pressure by BTICs impede the discovery of effective anti-BTIC therapies and limit the efficacy of individual gene targeting. Recent discoveries in the genetic and epigenetic determinants of BTIC tumorigenesis offer novel opportunities for RNAi-mediated targeting of BTICs. Here we show that BTIC growth arrest in vitro and in vivo is accomplished via concurrent siRNA knockdown of four transcription factors (SOX2, OLIG2, SALL2, and POU3F2) that drive the proneural BTIC phenotype delivered by multiplexed siRNA encapsulation in the lipopolymeric nanoparticle 7C1. Importantly, we demonstrate that 7C1 nano-encapsulation of multiplexed RNAi is a viable BTIC-targeting strategy when delivered directly in vivo in an established mouse brain tumor. Therapeutic potential was most evident via a convection-enhanced delivery method, which shows significant extension of median survival in two patient-derived BTIC xenograft mouse models of GBM. Our study suggests that there is potential advantage in multiplexed targeting strategies for BTICs and establishes a flexible nonviral gene therapy platform with the capacity to channel multiplexed RNAi schemes to address the challenges posed by tumor heterogeneity. Keywords: siRNA; lipopolymeric nanoparticle; glioblastoma transcription factor; brain tumor-initiating; cells; convection-enhanced deliver
    corecore