37 research outputs found

    De Novo Sequencing, Assembly, and Annotation of Four Threespine Stickleback Genomes Based on Microfluidic Partitioned DNA Libraries

    Get PDF
    The threespine stickleback is a geographically widespread and ecologically highly diverse fish that has emerged as a powerful model system for evolutionary genomics and developmental biology. Investigations in this species currently rely on a single high-quality reference genome, but would benefit from the availability of additional, independently sequenced and assembled genomes. We present here the assembly of four new stickleback genomes, based on the sequencing of microfluidic partitioned DNA libraries. The base pair lengths of the four genomes reach 92–101% of the standard reference genome length. Together with their de novo gene annotation, these assemblies offer a resource enhancing genomic investigations in stickleback. The genomes and their annotations are available from the Dryad Digital Repository (https://doi.org/10.5061/dryad.113j3h7)

    Energy spread of ultracold electron bunches extracted from a laser cooled gas

    Full text link
    Ultrashort and ultracold electron bunches created by near-threshold femtosecond photoionization of a laser-cooled gas hold great promise for single-shot ultrafast diffraction experiments. In previous publications the transverse beam quality and the bunch length have been determined. Here the longitudinal energy spread of the generated bunches is measured for the first time, using a specially developed Wien filter. The Wien filter has been calibrated by determining the average deflection of the electron bunch as a function of magnetic field. The measured relative energy spread σUU=0.64±0.09%\frac{\sigma_{U}}{U} = 0.64 \pm 0.09\% agrees well with the theoretical model which states that it is governed by the width of the ionization laser and the acceleration length

    Megabase-scale methylation phasing using nanopore long reads and NanoMethPhase

    No full text
    The ability of nanopore sequencing to simultaneously detect modified nucleotides while producing long reads makes it ideal for detecting and phasing allele-specific methylation. However, there is currently no complete software for detecting SNPs, phasing haplotypes, and mapping methylation to these from nanopore sequence data. Here, we present NanoMethPhase, a software tool to phase 5-methylcytosine from nanopore sequencing. We also present SNVoter, which can post-process nanopore SNV calls to improve accuracy in low coverage regions. Together, these tools can accurately detect allele-specific methylation genome-wide using nanopore sequence data with low coverage of about ten-fold redundancy.Medicine, Faculty ofScience, Faculty ofOther UBCNon UBCMedical Genetics, Department ofMicrobiology and Immunology, Department ofReviewedFacult

    Complete Chloroplast Genome Sequence of an Engelmann Spruce (Picea engelmannii, Genotype Se404-851) from Western Canada

    No full text
    International audienceEngelmann spruce (Picea engelmannii) is a conifer found primarily on the west coast of North America. Here, we present the complete chloroplast genome sequence of Picea engelmannii genotype Se404-851. This chloroplast sequence will benefit future conifer genomic research and contribute resources to further species conservation efforts

    A high-throughput pipeline for DNA/RNA/small RNA purification from tissue samples for sequencing

    No full text
    High-throughput total nucleic acid (TNA) purification methods based on solid-phase reversible immobilization (SPRI) beads produce TNA suitable for both genomic and transcriptomic applications. Even so, small RNA species, including miRNA, bind weakly to SPRI beads under standard TNA purification conditions, necessitating a separate workflow using column-based methods that are difficult to automate. Here, an SPRI-based high-throughput TNA purification protocol that recovers DNA, RNA and small RNA, called GSC-modified RLT+ Aline bead-based protocol (GRAB-ALL), which incorporates modifications to enhance small RNA recovery is presented. GRAB-ALL was benchmarked against existing nucleic acid purification workflows and GRAB-ALL efficiently purifies TNA, including small RNA, for next-generation sequencing applications in a plate-based format suitable for automated high-throughput sample preparation

    Evaluation of protocols for rRNA depletion-based RNA sequencing of nanogram inputs of mammalian total RNA.

    No full text
    Next generation RNA-sequencing (RNA-seq) is a flexible approach that can be applied to a range of applications including global quantification of transcript expression, the characterization of RNA structure such as splicing patterns and profiling of expressed mutations. Many RNA-seq protocols require up to microgram levels of total RNA input amounts to generate high quality data, and thus remain impractical for the limited starting material amounts typically obtained from rare cell populations, such as those from early developmental stages or from laser micro-dissected clinical samples. Here, we present an assessment of the contemporary ribosomal RNA depletion-based protocols, and identify those that are suitable for inputs as low as 1-10 ng of intact total RNA and 100-500 ng of partially degraded RNA from formalin-fixed paraffin-embedded tissues

    The Genome of the North American Brown Bear or Grizzly: Ursus arctos ssp. horribilis

    No full text
    The grizzly bear (Ursus arctos ssp. horribilis) represents the largest population of brown bears in North America. Its genome was sequenced using a microfluidic partitioning library construction technique, and these data were supplemented with sequencing from a nanopore-based long read platform. The final assembly was 2.33 Gb with a scaffold N50 of 36.7 Mb, and the genome is of comparable size to that of its close relative the polar bear (2.30 Gb). An analysis using 4104 highly conserved mammalian genes indicated that 96.1% were found to be complete within the assembly. An automated annotation of the genome identified 19,848 protein coding genes. Our study shows that the combination of the two sequencing modalities that we used is sufficient for the construction of highly contiguous reference quality mammalian genomes. The assembled genome sequence and the supporting raw sequence reads are available from the NCBI (National Center for Biotechnology Information) under the bioproject identifier PRJNA493656, and the assembly described in this paper is version QXTK01000000.Medicine, Faculty ofNon UBCMedical Genetics, Department ofReviewedFacult

    Increasing quality, throughput and speed of sample preparation for strand-specific messenger RNA sequencing

    No full text
    Background RNA-Sequencing (RNA-seq) is now commonly used to reveal quantitative spatiotemporal snapshots of the transcriptome, the structures of transcripts (splice variants and fusions) and landscapes of expressed mutations. However, standard approaches for library construction typically require relatively high amounts of input RNA, are labor intensive, and are time consuming. Methods Here, we report the outcome of a systematic effort to optimize and streamline steps in strand-specific RNA-seq library construction. Results This work has resulted in the identification of an optimized messenger RNA isolation protocol, a potent reverse transcriptase for cDNA synthesis, and an efficient chemistry and a simplified formulation of library construction reagents. We also present an optimization of bead-based purification and size selection designed to maximize the recovery of cDNA fragments. Conclusions These developments have allowed us to assemble a rapid high throughput pipeline that produces high quality data from amounts of total RNA as low as 25 ng. While the focus of this study is on RNA-seq sample preparation, some of these developments are also relevant to other next-generation sequencing library types.Medicine, Faculty ofScience, Faculty ofNon UBCMedical Genetics, Department ofMicrobiology and Immunology, Department ofReviewedFacult
    corecore