370 research outputs found

    A preliminary study of the effects of aircraft noise on families who reside in close proximity to an airport

    Get PDF
    Background: The use of air transportation has grown in the last century, escalating the noise exposure of families residing in close proximity to airports. The audiological effects need to be assessed to determine the impact of this increase on children and young adults living near to airports in South Africa. Method: Hearing patterns for these individuals were compared to those residing 30 km away from the airport. Sixty people, between the ages of 12-30 years, were assessed. Participants completed a questionnaire and were subjected to a diagnostic audiological test battery and tested using diagnostic distortion product otoacoustic emissions (DPOAEs). Results: Participants residing in close proximity to the airport presented with a notch configuration in the high frequencies, as opposed to those who lived further away. DPOAEs indicated a change in hearing in the high frequencies between the test populations. The positive relationship between the pure tone results and the DPOAEs strengthens the claim that aircraft noise has an effect on the hearing patterns of individuals living near to airports. Participants also experienced annoyance resulting from such noise. Conclusion: The results highlight the need for investigation into the hearing of individuals who reside in close proximity to airports. Comprehensive studies will be informative and beneficial to the field of audiology in South Africa. The highlighted health and safety issues require in-depth study to formulate a stronger argument for monitoring the hearing of families who are exposed to aircraft noise.Keywords: aircraft noise exposure, hearing patterns, distortion product otoacoustic emissions (DPOAEs

    DNA damage regulates direct association of TOR kinase with the RNA polymerase II-transcribed HMO1 gene

    Get PDF
    © 2017 Panday et al. The mechanistic target of rapamycin complex 1 (mTORC1) senses nutrient sufficiency and cellular stress. When mTORC1 is inhibited, protein synthesis is reduced in an intricate process that includes a concerted down-regulation of genes encoding rRNA and ribosomal proteins. The Saccharomyces cerevisiae high-mobility group protein Hmo1p has been implicated in coordinating this response to mTORC1 inhibition. We show here that Tor1p binds directly to the HMO1 gene (but not to genes that are not linked to ribosome biogenesis) and that the presence of Tor1p is associated with activation of gene activity. Persistent induction of DNA double-strand breaks or mTORC1 inhibition by rapamycin results in reduced levels of HMO1 mRNA, but only in the presence of Tor1p. This down-regulation is accompanied by eviction of Ifh1p and recruitment of Crf1p, followed by concerted dissociation of Hmo1p and Tor1p. These findings uncover a novel role for TOR kinase in control of gene activity by direct association with an RNA polymerase II-transcribed gene

    Feature weighting as a tool for unsupervised feature selection

    Get PDF
    Feature selection is a popular data pre-processing step. The aim is to remove some of the features in a data set with minimum information loss, leading to a number of benefits including faster running time and easier data visualisation. In this paper we introduce two unsupervised feature selection algorithms. These make use of a cluster-dependent feature-weighting mechanism reflecting the within-cluster degree of relevance of a given feature. Those features with a relatively low weight are removed from the data set. We compare our algorithms to two other popular alternatives using a number of experiments on both synthetic and real-world data sets, with and without added noisy features. These experiments demonstrate our algorithms clearly outperform the alternatives

    Observation and analysis of spatiotemporal characteristics of surface ozone and carbon monoxide at multiple sites in the Kathmandu Valley, Nepal

    Get PDF
    Residents of the Kathmandu Valley experience severe particulate and gaseous air pollution throughout most of the year, even during much of the rainy season. The knowledge base for understanding the air pollution in the Kathmandu Valley was previously very limited but is improving rapidly due to several field measurement studies conducted in the last few years. Thus far, most analyses of observations in the Kathmandu Valley have been limited to short periods of time at single locations. This study extends the past studies by examining the spatial and temporal characteristics of two important gaseous air pollutants (CO and O3) based on simultaneous observations over a longer period at five locations within the valley and on its rim, including a supersite (at Bode in the valley center, 1345&thinsp;m above sea level) and four satellite sites: Paknajol (1380&thinsp;m&thinsp;a.s.l.) in the Kathmandu city center; Bhimdhunga (1522&thinsp;m&thinsp;a.s.l.), a mountain pass on the valley's western rim; Nagarkot (1901&thinsp;m&thinsp;a.s.l.), another mountain pass on the eastern rim; and Naikhandi (1233&thinsp;m&thinsp;a.s.l.), near the valley's only river outlet. CO and O3 mixing ratios were monitored from January to July 2013, along with other gases and aerosol particles by instruments deployed at the Bode supersite during the international air pollution measurement campaign SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley – endorsed by the Atmospheric Brown Clouds program of UNEP). The monitoring of O3 at Bode, Paknajol and Nagarkot as well as the CO monitoring at Bode were extended until March 2014 to investigate their variability over a complete annual cycle. Higher CO mixing ratios were found at Bode than at the outskirt sites (Bhimdhunga, Naikhandi and Nagarkot), and all sites except Nagarkot showed distinct diurnal cycles of CO mixing ratio, with morning peaks and daytime lows. Seasonally, CO was higher during premonsoon (March–May) season and winter (December–February) season than during monsoon season (June–September) and postmonsoon (October–November) season. This is primarily due to the emissions from brick industries, which are only operational during this period (January–April), as well as increased domestic heating during winter, and regional forest fires and agro-residue burning during the premonsoon season. It was lower during the monsoon due to rainfall, which reduces open burning activities within the valley and in the surrounding regions and thus reduces sources of CO. The meteorology of the valley also played a key role in determining the CO mixing ratios. The wind is calm and easterly in the shallow mixing layer, with a mixing layer height (MLH) of about 250&thinsp;m, during the night and early morning. The MLH slowly increases after sunrise and decreases in the afternoon. As a result, the westerly wind becomes active and reduces the mixing ratio during the daytime. Furthermore, there was evidence of an increase in the O3 mixing ratios in the Kathmandu Valley as a result of emissions in the Indo-Gangetic Plain (IGP) region, particularly from biomass burning including agro-residue burning. A top-down estimate of the CO emission flux was made by using the CO mixing ratio and mixing layer height measured at Bode. The estimated annual CO flux at Bode was 4.9&thinsp;µg&thinsp;m−2&thinsp;s−1, which is 2–14 times higher than that in widely used emission inventory databases (EDGAR HTAP, REAS and INTEX-B). This difference in CO flux between Bode and other emission databases likely arises from large uncertainties in both the top-down and bottom-up approaches to estimating the emission flux. The O3 mixing ratio was found to be highest during the premonsoon season at all sites, while the timing of the seasonal minimum varied across the sites. The daily maximum 8&thinsp;h average O3 exceeded the WHO recommended guideline of 50&thinsp;ppb on more days at the hilltop station of Nagarkot (159 out of 357 days) than at the urban valley bottom sites of Paknajol (132 out of 354 days) and Bode (102 out of 353 days), presumably due to the influence of free-tropospheric air at the high-altitude site (as also indicated by Putero et al., 2015, for the Paknajol site in the Kathmandu Valley) as well as to titration of O3 by fresh NOx emissions near the urban sites. More than 78&thinsp;% of the exceedance days were during the premonsoon period at all sites. The high O3 mixing ratio observed during the premonsoon period  is of a concern for human health and ecosystems, including agroecosystems in the Kathmandu Valley and surrounding regions.</p

    Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter from wood-and dung-fueled cooking fires, garbage and crop residue burning, brick kilns, and other sources

    Get PDF
    The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) characterized widespread and under-sampled combustion sources common to South Asia, including brick kilns, garbage burning, diesel and gasoline generators, diesel groundwater pumps, idling motorcycles, traditional and modern cooking stoves and fires, crop residue burning, and heating fire. Fuel-based emission factors (EFs; with units of pollutant mass emitted per kilogram of fuel combusted) were determined for fine particulate matter (PM2.5), organic carbon (OC), elemental carbon (EC), inorganic ions, trace metals, and organic species. For the forced-draft zigzag brick kiln, EFPM2.5 ranged from 12 to 19gkg-1 with major contributions from OC (7%), sulfate expected to be in the form of sulfuric acid (31.9%), and other chemicals not measured (e.g., particle-bound water). For the clamp kiln, EFPM2.5 ranged from 8 to 13gkg-1, with major contributions from OC (63.2%), sulfate (23.4%), and ammonium (16%). Our brick kiln EFPM2.5 values may exceed those previously reported, partly because we sampled emissions at ambient temperature after emission from the stack or kiln allowing some particle-phase OC and sulfate to form from gaseous precursors. The combustion of mixed household garbage under dry conditions had an EFPM2.5 of 7.4±1.2gkg-1, whereas damp conditions generated the highest EFPM2.5 of all combustion sources in this study, reaching up to 125±23gkg-1. Garbage burning emissions contained triphenylbenzene and relatively high concentrations of heavy metals (Cu, Pb, Sb), making these useful markers of this source. A variety of cooking stoves and fires fueled with dung, hardwood, twigs, and/or other biofuels were studied. The use of dung for cooking and heating produced higher EFPM2.5 than other biofuel sources and consistently emitted more PM2.5 and OC than burning hardwood and/or twigs; this trend was consistent across traditional mud stoves, chimney stoves, and three-stone cooking fires. The comparisons of different cooking stoves and cooking fires revealed the highest PM emissions from three-stone cooking fires (7.6-73gkg-1), followed by traditional mud stoves (5.3-19.7gkg-1), mud stoves with a chimney for exhaust (3.0-6.8gkg-1), rocket stoves (1.5-7.2gkg-1), induced-draft stoves (1.2-5.7gkg-1), and the bhuse chulo stove (3.2gkg-1), while biogas had no detectable PM emissions. Idling motorcycle emissions were evaluated before and after routine servicing at a local shop, which decreased EFPM2.5 from 8.8±1.3 to 0.71±0.45gkg-1 when averaged across five motorcycles. Organic species analysis indicated that this reduction in PM2.5 was largely due to a decrease in emission of motor oil, probably from the crankcase. The EF and chemical emissions profiles developed in this study may be used for source apportionment and to update regional emission inventories

    Protein Localization with Flexible DNA or RNA

    Get PDF
    Localization of activity is ubiquitous in life, and also within sub-cellular compartments. Localization provides potential advantages as different proteins involved in the same cellular process may supplement each other on a fast timescale. It might also prevent proteins from being active in other regions of the cell. However localization is at odds with the spreading of unbound molecules by diffusion. We model the cost and gain for specific enzyme activity using localization strategies based on binding to sites of intermediate specificity. While such bindings in themselves decrease the activity of the protein on its target site, they may increase protein activity if stochastic motion allows the acting protein to touch both the intermediate binding site and the specific site simultaneously. We discuss this strategy in view of recent suggestions on long non-coding RNA as a facilitator of localized activity of chromatin modifiers

    Review article: Inferring permafrost and permafrost thaw in the mountains of the Hindu Kush Himalaya region

    Get PDF
    The cryosphere reacts sensitively to climate change, as evidenced by the widespread retreat of mountain glaciers. Subsurface ice contained in permafrost is similarly affected by climate change, causing persistent impacts on natural and human systems. In contrast to glaciers, permafrost is not observable spatially and therefore its presence and possible changes are frequently overlooked. Correspondingly, little is known about permafrost in the mountains of the Hindu Kush Himalaya (HKH) region, despite permafrost area exceeding that of glaciers in nearly all countries. Based on evidence and insight gained mostly in other permafrost areas globally, this review provides a synopsis on what is known or can be inferred about permafrost in the mountains of the HKH region. Given the extreme nature of the environment concerned, it is to be expected that the diversity of conditions and phenomena encountered in permafrost exceed what has previously been described and investigated. We further argue that climate change in concert with increasing development will bring about diverse permafrost-related impacts on vegetation, water quality, geohazards, and livelihoods. To better anticipate and mitigate these effects, a deepened understanding of high-elevation permafrost in subtropical latitudes as well as the pathways interconnecting environmental changes and human livelihoods are needed

    Longitudinal Predictors of Child Sexual Abuse in a Large Community-Based Sample of South African Youth

    Get PDF
    Sexual abuse has severe negative impacts on children's lives, but little is known about risk factors for sexual abuse victimization in sub-Saharan Africa. This study examined prospective predictors of contact sexual abuse in a random community-based sample of children aged 10 to 17 years (N = 3,515, 56.6% female) in South Africa. Self-report questionnaires using validated scales were completed at baseline and at 1-year follow-up (96.8% retention rate). Cross-sectional and longitudinal associations between hypothesized factors and sexual abuse were examined. For girls, previous sexual abuse (odds ratio [OR] = 3.44, 95% confidence interval [CI] = [2.03, 5.60]), baseline school dropout (OR = 2.76, 95% CI = [1.00, 6.19]), and physical assault in the community (OR = 2.17, 95% CI = [1.29, 3.48]) predicted sexual abuse at follow-up. Peer social support (OR = 0.84, 95% CI = [0.74, 0.98]) acted as a protective factor. Previous contact sexual abuse was the strongest predictor of subsequent sexual abuse victimization. In addition, peer support moderated the relationship between baseline assault and subsequent sexual abuse. For boys, no longitudinal predictors for sexual abuse victimization were identified. These results indicate that the most vulnerable girls-those not in school and with a history of victimization-are at higher risk for sexual abuse victimization. High levels of peer support reduced the risk of sexual abuse victimization and acted as a moderator for those who had experienced physical assault within the community. Interventions to reduce school drop-out rates and revictimization may help prevent contact sexual abuse of girls in South Africa

    Cremophor EL causes (pseudo-) non-linear pharmacokinetics of paclitaxel in patients

    Get PDF
    The non-linear plasma pharmacokinetics of paclitaxel in patients has been well established, however, the exact underlying mechanism remains to be elucidated. We have previously shown that the non-linear plasma pharmacokinetics of paclitaxel in mice results from Cremophor EL. To investigate whether Cremophor EL also plays a role in the non-linear pharmacokinetics of paclitaxel in patients, we have established its pharmacokinetics in patients receiving paclitaxel by 3-, 24- or 96-h intravenous infusion. The pharmacokinetics of Cremophor EL itself was non-linear as the clearance (Cl) in the 3-h schedules was significantly lower than when using the longer 24- or 96-h infusions (Cl175–3 h = 42.8 ± 24.9 ml h−1 m−2; Cl175–24 h = 79.7 ± 24.3; P = 0.035 and Cl135–3 h = 44.1 ± 21.8 ml h−1 m−1; Cl140–96 h = 211.8 ± 32.0; P < 0.001). Consequently, the maximum plasma levels were much higher (0.62%) in the 3-h infusions than when using longer infusion durations. By using an in vitro equilibrium assay and determination in plasma ultrafiltrate we have established that the fraction of unbound paclitaxel in plasma is inversely related with the Cremophor EL level. Despite its relatively low molecular weight, no Cremophor EL was found in the ultrafiltrate fraction. Our results strongly suggest that entrapment of paclitaxel in plasma by Cremophor EL, probably by inclusion in micelles, is the cause of the apparent nonlinear plasma pharmacokinetics of paclitaxel. This mechanism of a (pseudo-)non-linearity contrasts previous postulations about saturable distribution and elimination kinetics and means that we must re-evaluate previous assumptions on pharmacokinetics–pharmacodynamics relationships. © 1999 Cancer Research Campaig
    corecore