6,153 research outputs found

    Intersecting Branes in Matrix Theory

    Get PDF
    We construct BPS states in the matrix description of M-theory. Starting from a set of basic M-theory branes, we study pair intersections which preserve supersymmetry. The fractions of the maximal supersymmetry obtained in this way are 1/2, 1/4, 1/8, 3/16 and 1/16. In explicit examples we establish that the matrix BPS states correspond to (intersecting) brane configurations that are obtained from the d=11 supersymmetry algebra. This correspondence for the 1/2 supersymmetric branes includes the precise relations between the charges.Comment: 11 pages, LaTeX, no figures, minor changes, shortened version to be published in Physics Letters

    Use of a Microphone Phased Array to Determine Noise Sources in a Rocket Plume

    Get PDF
    A 70-element microphone phased array was used to identify noise sources in the plume of a solid rocket motor. An environment chamber was built and other precautions were taken to protect the sensitive condenser microphones from rain, thunderstorms and other environmental elements during prolonged stay in the outdoor test stand. A camera mounted at the center of the array was used to photograph the plume. In the first phase of the study the array was placed in an anechoic chamber for calibration, and validation of the indigenous Matlab(R) based beamform software. It was found that the "advanced" beamform methods, such as CLEAN-SC was partially successful in identifying speaker sources placed closer than the Rayleigh criteria. To participate in the field test all equipments were shipped to NASA Marshal Space Flight Center, where the elements of the array hardware were rebuilt around the test stand. The sensitive amplifiers and the data acquisition hardware were placed in a safe basement, and 100m long cables were used to connect the microphones, Kulites and the camera. The array chamber and the microphones were found to withstand the environmental elements as well as the shaking from the rocket plume generated noise. The beamform map was superimposed on a photo of the rocket plume to readily identify the source distribution. It was found that the plume made an exceptionally long, >30 diameter, noise source over a large frequency range. The shock pattern created spatial modulation of the noise source. Interestingly, the concrete pad of the horizontal test stand was found to be a good acoustic reflector: the beamform map showed two distinct source distributions- the plume and its reflection on the pad. The array was found to be most effective in the frequency range of 2kHz to 10kHz. As expected, the classical beamform method excessively smeared the noise sources at lower frequencies and produced excessive side-lobes at higher frequencies. The "advanced" beamform routine CLEAN-SC created a series of lumped sources which may be unphysical. We believe that the present effort is the first-ever attempt to directly measure noise source distribution in a rocket plume

    Relativistic Equation of state with short range correlations

    Full text link
    Short range correlations are introduced using unitary correlation method in a relativistic approach to the equation of state of the infinite nuclear matter in the framework of the Hartree-Fock approximation. The effect of the correlations in the ground state properties of the nuclear matter is studied.Comment: 4 pages, 4 figure

    Brane-Production and the Neutrino-Nucleon cross section at Ultra High Energies in Low Scale Gravity Models

    Full text link
    The origin of the ultra high energy cosmic ray (UHECR) showers has remained as a mystery among particle physicists and astrophysicists. In low scale gravity models, where the neutrino-nucleon cross section rises to typical hadronic values at energies above 102010^{20} eV, the neutrino becomes a candidate for the primary that initiates these showers. We calculate the neutrino-nucleon cross section at ultra high energies by assuming that it is dominated by the production of p-branes. We show, using a generalized Randall-Sundrum model, that the neutrino-nucleon cross-section at neutrino energies of 101110^{11} GeV is of the order of 100 mb, which is required for explaining UHECR events. Similar result also follows in other models such as the Lykken-Randall model.Comment: 13 pages, 2 figures, significantly revised version, no change in conclusion

    Estimation of unsteady lift on a pitching airfoil from wake velocity surveys

    Get PDF
    The results of a joint experimental and computational study on the flowfield over a periodically pitched NACA0012 airfoil, and the resultant lift variation, are reported in this paper. The lift variation over a cycle of oscillation, and hence the lift hysteresis loop, is estimated from the velocity distribution in the wake measured or computed for successive phases of the cycle. Experimentally, the estimated lift hysteresis loops are compared with available data from the literature as well as with limited force balance measurements. Computationally, the estimated lift variations are compared with the corresponding variation obtained from the surface pressure distribution. Four analytical formulations for the lift estimation from wake surveys are considered and relative successes of the four are discussed

    Short range correlations in relativistic nuclear matter models

    Full text link
    Short range correlations are introduced using unitary correlation method in a relativistic approach to the equation of state of the infinite nuclear matter in the framework of the Hartree-Fock approximation. It is shown that the correlations give rise to an extra node in the ground-state wave-function in the nucleons, contrary to what happens in non-relativistic calculations with a hard core. The effect of the correlations in the ground state properties of the nuclear matter and neutron matter is studied. The nucleon effective mass and equation of state (EOS) are very sensitive to short range correlations. In particular, if the pion contact term is neglected a softening of the EOS is predicted. Correlations have also an important effect on the neutron matter EOS which presents no binding but only a very shallow minimum contrary to the Walecka model.Comment: 8pages, 4 figure
    corecore