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Abstract

We construct BPS states in the matrix description of M-theory. Starting from a set of basic M-theory branes, we study
1 1pair intersections which preserve supersymmetry. The fractions of the maximal supersymmetry obtained in this way are , ,2 4

1 3 1 Ž ., and . In explicit examples we establish that the matrix BPS states correspond to intersecting brane configurations8 16 16

that are obtained from the ds11 supersymmetry algebra. This correspondence for the 1r2 supersymmetric branes includes
the precise relations between the charges. q 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

w xRecently, the matrix model formulated in 1 for
w xthe microscopic description of M-theory 2,3 has

drawn a considerable amount of attention. This model
may be taken as a quantum mechanical framework

Ž w xfor non-perturbative string theory see 4 for a re-
.cent review . In this model the only degrees of

freedom are the zerobranes. However, various au-
thors have successfully demonstrated how the dy-
namics of strings, membranes and higher branes can
arise in this model. The matrix description of a

w xmembrane can be found in 1 , while the open mem-
w xbrane is described in 5 . A proposal for the descrip-

Žtion of a fourbrane the wrapped fivebrane of M-the-
. w xory is provided in 6 .

1 Permanent Address: Mehta Research Institute of Mathematics
& Mathematical Physics, Chatnag Road, Jhusi, Allahabad 211506,
India.

w xIn 7 these higher dimensional objects are studied
through the supersymmetry algebra of the matrix
description of M-theory. Thus, the existence of con-
served charges associated with the membrane and
fivebrane is established. Interactions involving dif-

w xferent branes have been studied in, e.g., 8–11 .
In this note we provide additional evidence in

support of the matrix model from an investigation of
matrix configurations that preserve some fraction of
the maximal supersymmetry, and correspond to in-
tersecting branes. We start from a small number of
basic objects with 1r2 supersymmetry, which have
nonzero 2-, 4-, 6- and 8-form charges. Besides these,
some basic objects with less supersymmetry can be
obtained. These configurations and their intersections
should correspond to BPS solutions of the ds11
supergravity theory. By an explicit analysis we estab-
lish this correspondence for the basic objects and
their pair intersections.

The fractions of maximal supersymmetry which
1 1 1 3 1can be obtained in this way are , , , and . In2 4 8 16 16
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the next section we discuss the basic objects. Pair
intersections, starting with an explicit construction of
the matrix configuration corresponding to two inter-
secting membranes, are discussed in Section 3. The
correspondence of the matrix configurations to ds
11 supergravity is discussed in Section 4 through an
analysis of the ds11 supersymmetry algebra.

2. Basic solutions and residual supersymmetry

The supersymmetric quantum mechanical theory
which corresponds to the matrix version of M-theory

w xcan be written, in a suitable parametrisation 12–14,1

1 22 1a a bw xLs tr E X q2u E u y X , XŽ .½ 0 a 0 a 22 g

ay2u g u , X . 1Ž . Ž .5aba a b

Here a,bs1, . . . ,9 correspond to the nine transverse
directions in the matrix model, a ,bs1, . . . ,16 are
nine-dimensional spinor indices 2, X and u area

hermitian N=N-matrices. It is understood that the
limit N™` has to be taken, although one can also

w xgive meaning to the finite N models 15 .
Ž .The action 1 is invariant under the supersymme-

try transformations
a ad X sy2eg u ,

i
1 a a bw xdus E X g q X , X g eqe , 2Ž .˜0 a ab2 ½ 52

where e and e are independent supersymmetry pa-˜
rameters. The algebra of supersymmetry transforma-

w xtions is given in 12,7 , and contains besides the
usual translational term contributions of 2-form and
4-form charges 3

Za1 a2 s i tr X w a1 X a2 x ,2

Za1 a2 a3 a4 sR tr X w a1 X a2 X a3 X a4 x . 3Ž .4 11

2 � 4The g-matrices satisfy g ,g s2d . We use the notationa b ab

g 'g sg g PPPg . Note that g 2 s1 for ns1,4,5,8,9.Žn. i . . . i i i i Žn.1 n 1 2 n3 We normalize the charges Z with factors of Rny 1. For Z2 n 11 2
w xand Z this is in agreement with 7 . The factors in Z and Z4 6 8

ensure that all charges have the same dimension. They are in
agreement with the analysis of the ds11 supersymmetry algebra
in Section 4.

We also define 6- and 8-form charges:

Za1 PPP a6 s iR2 tr X w a1 X a2 PPP X a6 x ,6 11

Za1 PPP a8 sR3 tr X w a1 X a2 PPP X a8 x . 4Ž .8 11

Here R is the radius of the compact direction X 11
11

in the matrix model. The momentum P in that11

direction is given by P sNrR . Nonzero charges11 11

can only occur in the limit N™`.
To see how objects with non-vanishing charges

Z can be constructed in matrix theory, we start withn

the single branes preserving 1r2 of supersymmetry.
w xThese are 7

Ø W, the wave in the a-direction: here we have
Ž a. aE X sp d .0 i j i j

Ø M2, the membrane: in this case the X a are
time-independent, and for a membrane in the

w 1 2 x12-direction we require X , X s ic d , wherei j 1 i j

c is a real parameter. To obtain a finite mem-1

brane charge Z , c should scale as Ny1 for2 1

N™`.
Ø M5, the fivebrane which is wrapped around the

longitudinal direction. For an M5 in the 1234-di-
w 1 2 x w 3 4 xrection, we have X , X s ic d , X , X si j 1 i j i j

ic d . The charge of M5 is built up out of2 i j

membrane charges. This object can be thought of
as infinite stacks of membranes in both the 12-,
and the 34-direction. Finite Z again requires that4

the c scale appropriately as N™`.i
w 1 2 xØ M6, the sixbrane: in this case X , X si j

w 3 4 x w 5 6 xic d , X , X s ic d , X , X s ic d .1 i j i j 2 i j i j 3 i j

This is built up out of membranes in the 12-, 34-,
and 56-directions, but there are also non-vanish-
ing fivebrane charges. Presumably M6 is related
to the Kaluza-Klein monopole in ds11, al-
though this correspondence has not been estab-
lished.

Ø M9, the ninebrane, which is wrapped around the
w 1 2 xlongitudinal direction. Here X , X s ic d ,i j 1 i j

w 3 4 x w 5 6 x w 7X , X s ic d , X , X s ic d , X ,i j 2 i j i j 3 i j
8 xX s ic d . Again we have infinite stacks ofi j 4 i j

membranes, as well as nonzero five- and sixbrane
charges.
Since higher dimensional objects are built out of

stacks of membranes, the charges Z can, for any2 n

n, be related to membrane charges. We find, inde-
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w a b xpendently of the choice of the scaling of X , X ,
the behaviour

n
1ynZ sP Z , ns1, . . . ,4 . 5Ž .Ł2 n 11 2, i

is1

Ž .The result 5 is in agreement with the results of
Section 4 when considering 1r2 supersymmetric
non-threshold states.

These solutions to the matrix model equations of
motion have us0 and preserve 1r2 supersymmetry.

ŽThe vanishing of du for static solutions, the preser-
vation of supersymmetry for W is shown in a similar

.way implies that

i
a bw xd esy X , X g e , 6Ž .˜ i ji j ab4

where the indices i, js1, . . . , N have been made
Ž .explicit. The relation 6 can only be satisfied if

w a b x abX , X s iF d . 7Ž .i j i j

Ž .A representation of 7 can be given in terms of a
pair of operators p and q satisfying canonical com-

w xmutation relations q, p s i. As long as the commu-
tator of the matrices X is proportional to the unit
matrix e is determined in terms of e , so that 1r2 of˜
supersymmetry is preserved.

Other basic solutions have less supersymmetry.
We will consider the following ones:

w xØ P5, the pure fivebrane 7 . This has the following
w 1 2 x w 3 4 x Ž .structure: X , X s X , X s ic |ms .i j i j 1 3 i j

We call it the pure fivebrane since the membrane
charges vanish. Here 1r4 supersymmetry is pre-

Ž .served see below .
Ø P9, the ‘‘pure’’ ninebrane. Here we have

w 1 2 x Ž . w 3 4 xX , X s ic | m s , X , X s ici j 1 3 i j i j 2
. w 5 6 x Ž . w 7 8 x| m s , X , X s ic | m s , X , Xs3 i j i j 3 3 i j i j

Ž .i c |ms . This object is not entirely pure,4 3 i j

since the constituent P5-charges do not vanish.
However, there is no M2 or M6 charge. Depend-
ing on the values of the coefficients, 2n, ns1,2,3
of the 32 supersymmetry charges are unbroken
Ž .see below .

Ž .Note that we cannot define a ‘‘pure’’ M6 P6 in
the same way, since then the charge of rank six
vanishes. By using a more complicated tensor struc-
ture for the matrices we can form a P6 and P9, but
these configurations do not preserve supersymmetry.

Let us now discuss the residual supersymmetry of
the two solutions P5 and P9. We first consider P9.
There are two equations that must have a solution to

Ž .preserve some supersymmetry c /0 , which implyi

es0 and˜
c g qc g qc g qc g es0 . 8Ž . Ž .1 12 2 34 3 56 4 78

Ž .We rewrite this as 1yP es0, with

Ps c g qc g qc g rc . 9Ž . Ž .2 1234 3 1256 4 1278 1

The g-matrices in P all square to one, and commute
with each other. Also their trace, and the trace of
their products, vanishes. These conditions determine
the eigenvalues of P. Depending on the values of the
coefficients, 2n, ns1,2,3 of the eigenvalues of P
can be equal to 1. We find ns1, or preservation of
1r16 of the maximal supersymmetry, if, e.g., c s1
Ž ." c qc qc . For ns2, or 1r8, we need more2 3 4

stringent conditions: c sc , c sc . In that case the1 2 3 4

fivebrane charges in the directions 1234 and 5678
Ž 2 2are still arbitrary proportional to c and c , respec-1 3

. Žtively , but the other fivebrane charges 1256, 1278,
.3456, 3478 are equal and proportional to 2c c . The1 3

amount of preserved supersymmetry can be further
increased by setting all coefficients equal: c sc s1 2

c sc . This corresponds to equal fivebrane charges3 4

in all six directions, and 3r16 of the maximal super-
symmetry.

Ž .If one of the coefficients, say c , in 8 vanishes,4
Ž .and we choose c s" c qc , then 1r8 super-1 2 3

symmetry is preserved. This can be interpreted as an
intersection of oppositely charged sixbranes, a con-
figuration which also has nonzero fivebrane charges.
If two coefficients vanish, the remaining two must be
equal to preserve 1r4 supersymmetry. This last case
corresponds to P5.

This supersymmetry analysis is very similar to
that occurring in the analysis of branes which inter-

w xsect at angles 16–18 .

3. Pair intersections

The fact that for P5 and P9 the commutators of
the X a are not proportional to the unit matrix is the
cause of the additional supersymmetry breaking. For
intersecting pairs we split the matrices in two blocks,
each representing a brane, of size N and N , with1 2

N qN sN. We will limit ourselves in this paper to1 2
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Table 1
Supersymmetric pair intersections involving W. The notation
Ž < .p A, B indicates that the objects A and B have p common
spacelike worldvolume directions. The second column gives the
amount of residual supersymmetry that can be obtained

Matrix configuration SUSY

1Ž < .1 W, M2 4
1Ž < .1 W, M5 4
1Ž < .1 W, M6 8
1 1 3Ž < .1 W, M9 , ,8 16 16

pair intersections, starting with those involving the
wave W.

It is easy to see that only in the case of the branes
M2, M5, M6 and M9 a supersymmetric intersection
with a wave can be constructed 4. In these cases the
direction of the wave necessarily must be in the
worldvolume of the brane 5. The same analysis we
did in Section 2 reveals that the possible fractions
are 1r4, 1r8, 3r16 and 1r16. This case is summa-
rized in Table 1.

Let us now look at the pair intersections of M2,
M5, M6 and M9. In the general case, the condition
Ž .8 will be of the form

F abg es0 , F ab 'F ab yF ab , 10Ž .ab 1 2

where F , is1,2 come from the commutatorsi
w a b xX , X for the two branes. Using nine-dimensional
rotations a generic antisymmetric matrix can be put
into a canonical form, in which only F12 , F 34, F 56

and F 78 are nonzero. Thus the analysis reduces to
Ž .that of 8 . Therefore the only fractions of maximal

1 1 1 36supersymmetry in pair intersections are , , , .4 8 16 16

4 For P5 and P9 one finds the requirement g e s0 for a wave1
Ž .in the 1-direction since e vanishes . However, g has no zero˜ 1

eigenvalues.
5 Consider a membrane in the 12-direction. If the wave is not in

the worldvolume of the brane, the condition on e is of the form
Ž .c g y pg e s0 for a wave in the 9-direction. The g matrices1 12 9

can be simultaneously diagonalised. Since g has real, and g9 12

imaginary eigenvalues, their linear combination cannot have
eigenvalue zero. For branes of higher dimension the same argu-
ment holds.

6 1 3 5w xNote that in 17 also fractions , and are obtained for32 32 32

pair intersections at angles, but these require ten spatial dimen-
1 w xsions. For orthogonal intersection of branes also can occur 19 ,32

but this requires at least five branes.

We will limit ourselves to those cases for which
the only nonzero commutators used in constructing

w 2 ny1 2 n xthe branes are X , X for ns1, . . . ,4. For
such configurations the pair intersections are sum-
marised in Table 2. As an illustration we will work
out one particular case, the intersection of a mem-
brane M2 with the M6-brane, in detail.

Splitting up the matrices appropriately and using
Ž .2 we get the following equations for the supersym-
metry parameters

M6: es c g qc g qc g e ,Ž .˜ 1 12 2 34 3 56

M2: esc g e . 11Ž .˜ 4 12

The first equation breaks half of the supersymmetry
and for the second equation to be consistent with the
first we find that

c yc g qc g qc g es0 . 12Ž . Ž .Ž .1 4 12 2 34 3 56

When c sc we must have c s"c , and 1r41 4 2 3

supersymmetry is preserved. If c /c , we must1 4
Ž .require c qc sc yc up to choices of signs to2 3 1 4

preserve 1r8 of the maximal supersymmetry.
Ž < .We can also have 0 M2, M6 , with the mem-

brane directions outside the M6. This leads to Eq.
Ž .8 , and can preserve nr16, ns1,2,3 of the maxi-
mal supersymmetry.

ŽWhen one brane in the pair is a ‘pure’ brane P5
.or P9 the analysis changes. Because a ‘pure’ brane

makes es0, for every brane in the pair we get an˜
equation R es0 where R is the sum of one or more
matrices g . So we have to look for zero eigenval-Ž2.

Table 2
Pair intersections of M2, M5, M6, M9. Only branes are consid-
ered which are built up out of membranes in the 12, 34, 56 and 78
directions

Configuration SUSY Configuration SUSY

1 1 1Ž < . Ž < .0 M2, M2 4 M5, M5 ,4 2 4
1 1 1 3Ž < . Ž < .2 M2, M2 2 M5, M6 , ,2 8 16 16
1 1 1Ž < . Ž < .0 M2, M5 4 M5, M6 ,8 4 8
1 1 1 1 3Ž < . Ž < .2 M2, M5 4 M5, M9 , , ,4 4 8 16 16
1 1 3 1 1 1 3Ž < . Ž < .0 M2, M6 , , 4 M6, M6 , , ,8 16 16 4 8 16 16
1 1 1 1 1Ž < . Ž < .2 M2, M6 , 6 M6, M6 , ,4 8 2 4 8
1 1 3 1 1 1 3Ž < . Ž < .2 M2, M9 , , 6 M6, M9 , , ,8 16 16 4 8 16 16
1 1 3 1 1 1 1 3Ž < . Ž < .0 M5, M5 , , 8 M9, M9 , , , ,8 16 16 2 4 8 16 16
1 1Ž < .2 M5, M5 ,4 8
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ues of the matrix R. This means that we cannot add
an M2 or W to a P5 or P9, because in those cases
R has no zero eigenvalues. The preserved supersym-
metry depends on the relative orientation and on the
number of g-matrices in each R. The fractions of
supersymmetry that can be obtained are the same as
in the cases considered previously.

4. Relation with eleven-dimensional supergravity

The supersymmetry algebra in ds11, including
all allowed central charges, takes on the following

w xform 20,21 :
1m m nQ ,Q s CG P q CG Z� 4 Ž . Ž .ab a ba b m m n2

1 m . . . m1 5q CG Z , 13Ž . Ž .ab m . . . m5! 1 5

where a ,bs1, . . . ,32. The charges Z and Zm n m . . . m1 5

correspond, in the case of spacelike indices, to the
membrane charge and fivebrane charge. If one of the
indices is timelike, Z and Z correspond to0 m 0 m . . . m1 4

the dual of a ninebrane and a sixbrane charge, re-
w x 0spectively 22 . We choose CsG and write

0� 4Q,Q sP |qG . 14Ž . Ž .
In matrix theory in the infinite momentum frame

there is always a wave present, which, in this sec-
tion, we place in the direction 9. The basic M5
configuration corresponds to nonzero P sp, Z s9 12

Žz and Z sz because M5 has nonzero membrane1 34 2
.charges and Z sy, with of course a component12349

in the direction of the boost. We find

2 y20G s PŽ . Ž .
= p2 qz 2 qz 2 qy2 q2 pyyz z G 1234 .Ž .Ž .1 2 1 2

15Ž .

If the charges are such that pysz z then we can1 2
0 2Ž .choose P to set G s|, which implies that 1r2

of the maximal supersymmetry is preserved. This
relation between the momentum and the charges is

ŽŽ .what we expect from the matrix theory 5 for
.ns2 .

The pure fivebrane, P5, has no membrane
charges, and therefore

2 y20 2 2 1234G s P p qy q2 pyG . 16Ž . Ž . Ž .Ž .

2Ž .Now we cannot set G s|, but we can set 16 of
2Ž .the eigenvalues of G equal to one by choosing

0P appropriately. This means that G has 8 eigenval-
ues equal to y1, and 1r4 supersymmetry is unbro-
ken. This ds11 configuration corresponds to a
fivebrane and a wave.

In this way the matrix configurations of Section 2
can be identified with supergravity solutions. M5
corresponds to a bound state of two membranes and

Ža fivebrane, boosted in the 9 direction see also the
w x.discussion in 23 . With 1r2 supersymmetry this is

a non-threshold solution, which is not yet known as a
solution of the ds11 supergravity equations. The

Ž .result 16 for P5 corresponds to a threshold solu-
tion, and is the known intersection of a fivebrane and

w xa wave 24 .
To find corresponding BPS states for the 1r2

supersymmetric matrix M6 and M9 the same analy-
sis can be done as for the M5. The result is that

Ž .these non-threshold states do exist in the supersym-
metry algebra, but we have to impose constraints on
the charges. These constraints however are exactly

Ž .the relations between the different charges 5 in
matrix theory.

As is clear from Table 2, there are configurations
preserving 3r16 of the maximal supersymmetry.

Ž < . 7The case of 0 M5, M5 was studied in detail in
w x25 . These authors show that this configuration in
ds10 is T-dual to two D4 branes at angles.

As an example of a state preserving 3r16 of the
supersymmetry we analyse P9. There is one nine-
brane charge, mixed with 6 fivebrane charges and
momentum in the 9th direction. The ninebrane charge
corresponds to 8 Z sm. Including all charges we0h
obtain

0 09 012349 012569 012789P GsG pqG y qG y qG y1 2 3

qG 034569 y qG 034789 y qG 056789 y qG hm ,4 5 6

17Ž .
0 2Ž .In P G there are three independent commuting

G-matrices so that in the generic case this configura-

7 This configuration corresponds to two fivebranes intersecting
over a string. In matrix theory the common direction corresponds

Ž < .to the longitudinal direction and that is why we write 0 M5, M5 .
8 h indicates the direction 10. Note that G hs G 0123456789.
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tion will preserve 1r16 of the supersymmetry. This
corresponds to a threshold bound state of six five-
branes, a ninebrane and a wave. We can also obtain
configurations which preserve 1r8 and 3r16, by
restricting the coefficients. If we set y sy sy s2 3 4

y sy, leaving y and y arbitrary, we find that5 1 6
0 2Ž . ŽP G has the following eigenvalues: pym"

Ž ..2y yy with multiplicity 8 for each choice of1 6
Ž .2sign, pqmqy qy with multiplicity 8, and1 6

Ž .2pqmyy yy "4 y with multiplicity 4 for each1 6

sign. Therefore, by choosing P 0 appropriately, we
preserve 1r8 supersymmetry, for each of the eigen-
values of multiplicity 8. If we also set y sy sy,1 6

the eigenvalues simplify further. There are then 12
Ž .2eigenvalues equal to pqmq2 y , leading to 3r16

of the maximal supersymmetry. For six equal charges
Ž 0.2 Ž .2we find that for P s pym then 1r4 of the

supersymmetry charges are preserved. Thus the ds
11 supersymmetry algebra seems to support a boosted
longitudinal ninebrane with 1r4 supersymmetry. In
Section 2 we showed that such an object is absent in
the matrix model.

We believe that the supersymmetric configura-
tions in matrix theory that we constructed in Section
2 all correspond to supersymmetric states in the

Ž .ds11 supersymmetry algebra 13 . We have veri-
fied this in a number of cases, and always found
agreement. Presumably, solutions of the ds11 su-
pergravity equations of motion for such states can be
constructed. A lot of work has been done on non-
threshold states involving membranes and fivebranes
Ž w x.see for instance 26,27 . In the case of the sixbrane
or Kaluza-Klein monopole much less is known, while
of course the status of the ninebrane as a solution in
ds11 supergravity is uncertain.

However, not all supersymmetric configurations
constructed in the ds11 supersymmetry algebra
can be obtained from the matrix model. For instance,
in the ds11 algebra the sixbrane together with a
transverse wave gives a state with 16 preserved
supersymmetry charges 9. This we do not find in the
matrix model. In the analysis of P9 given above the
result in the ds11 algebra suggests a pure nine-

9 09 0123456 0Ž .In this case we have G s G pq G m rP , which
2 2 2 0 2Ž . Ž .corresponds to G s p q m r P .

brane with 1r4 supersymmetry in the matrix model.
This is also absent in Section 2.

So, concerning the basic branes there seems to be
a problem involving the absence of pure sixbranes
and ninebranes. In the matrix model they can be
constructed but break all of the supersymmetries,
while the ds11 supersymmetry algebra seems to
support supersymmetric configurations of this type.

5. Conclusion

Although the missing transversal fivebrane, as
well as the problems involving six- and ninebranes,
indicate that something is still poorly understood in
the matrix model, many BPS states and their pair
intersections seem to be in agreement with what we
expect if the matrix model is to describe M theory.
We believe that any matrix BPS state has an ana-
logue as a threshold or non-threshold intersecting
brane configuration in the ds11 supersymmetry
algebra.

Ž .In this paper we establish a partial correspon-
dence between supersymmetric branes in the matrix
model and in the ds11 supersymmetry algebra.
Especially, the 1r2 supersymmetric basic M6 and
M9 in matrix theory correspond exactly to 1r2
supersymmetric non-threshold states in the super-
symmetry algebra carrying the same charges. Inter-
esting open questions concerning the existence of
non-threshold solutions to the ds11 supergravity
equations of motion corresponding to matrix model
states remain. The relations presented here between
matrix theory and the supergravity limit can be
considered additional evidence for matrix theory.
The fact that the correspondence is not complete
implies that further work needs to be done, and
hopefully this will lead to a better understanding of
matrix theory.
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