77 research outputs found

    Bourbon: Is it infectious?

    Get PDF
    A mysterious anguish that leads to mortality of a farmer in Kansas, US on February 25th, 2015 has implicated a rise of an another deadly virus after the impact of enigmatic sufferings from Ebola called the Bourbon Virus as reported by Vox media on February 25th, 2015, though the virus was identified in 2014

    On perfect powers that are sum of two balancing numbers

    Full text link
    Let BkB_k denote the kthk^{th} term of balancing sequence. In this paper we find all positive integer solutions of the Diophantine equation Bn+Bm=xqB_n+B_m = x^q in variables (m,n,x,q)(m, n,x,q) under the assumption nm(mod2)n\equiv m \pmod 2. Furthermore, we study the Diophantine equation Bn3±Bm3=xqB_n^{3}\pm B_m^{3} = x^q with positive integer q3q\geq 3 and gcd(Bn,Bm)=1\gcd(B_n, B_m) =1.Comment: 9 page

    COVID-19 Vaccines and Thrombosis—Roadblock or Dead-End Street?

    Get PDF
    Two adenovirus-based vaccines, ChAdOx1 nCoV-19 and Ad26.COV2.S, and two mRNA-based vaccines, BNT162b2 and mRNA.1273, have been approved by the European Medicines Agency (EMA), and are invaluable in preventing and reducing the incidence of coronavirus disease-2019 (COVID-19). Recent reports have pointed to thrombosis with associated thrombocytopenia as an adverse effect occurring at a low frequency in some individuals after vaccination. The causes of such events may be related to SARS-CoV-2 spike protein interactions with different C-type lectin receptors, heparan sulfate proteoglycans (HSPGs) and the CD147 receptor, or to different soluble splice variants of the spike protein, adenovirus vector interactions with the CD46 receptor or platelet factor 4 antibodies. Similar findings have been reported for several viral diseases after vaccine administration. In addition, immunological mechanisms elicited by viral vectors related to cellular delivery could play a relevant role in individuals with certain genetic backgrounds. Although rare, the potential COVID-19 vaccine-induced immune thrombotic thrombocytopenia (VITT) requires immediate validation, especially in risk groups, such as the elderly, chronic smokers, and individuals with pre-existing incidences of thrombocytopenia; and if necessary, a reformulation of existing vaccines

    A unique view of SARS-COV-2 through the lens of ORF8 protein

    Get PDF
    Immune evasion is one of the unique characteristics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) attributed to its ORF8 protein. This protein modulates the adaptive host immunity through down-regulation of MHC-1 (Major Histocompatibility Complex) molecules and innate immune responses by surpassing the host\u27s interferon-mediated antiviral response. To understand the host\u27s immune perspective in reference to the ORF8 protein, a comprehensive study of the ORF8 protein and mutations possessed by it have been performed. Chemical and structural properties of ORF8 proteins from different hosts, such as human, bat, and pangolin, suggest that the ORF8 of SARS-CoV-2 is much closer to ORF8 of Bat RaTG13-CoV than to that of Pangolin-CoV. Eighty-seven mutations across unique variants of ORF8 in SARS-CoV-2 can be grouped into four classes based on their predicted effects (Hussain et al., 2021) [1]. Based on the geo-locations and timescale of sample collection, a possible flow of mutations was built. Furthermore, conclusive flows of amalgamation of mutations were found upon sequence similarity analyses and consideration of the amino acid conservation phylogenies. Therefore, this study seeks to highlight the uniqueness of the rapidly evolving SARS-CoV-2 through the ORF8

    Dynamics of Hot QCD Matter -- Current Status and Developments

    Full text link
    The discovery and characterization of hot and dense QCD matter, known as Quark Gluon Plasma (QGP), remains the most international collaborative effort and synergy between theorists and experimentalists in modern nuclear physics to date. The experimentalists around the world not only collect an unprecedented amount of data in heavy-ion collisions, at Relativistic Heavy Ion Collider (RHIC), at Brookhaven National Laboratory (BNL) in New York, USA, and the Large Hadron Collider (LHC), at CERN in Geneva, Switzerland but also analyze these data to unravel the mystery of this new phase of matter that filled a few microseconds old universe, just after the Big Bang. In the meantime, advancements in theoretical works and computing capability extend our wisdom about the hot-dense QCD matter and its dynamics through mathematical equations. The exchange of ideas between experimentalists and theoreticians is crucial for the progress of our knowledge. The motivation of this first conference named "HOT QCD Matter 2022" is to bring the community together to have a discourse on this topic. In this article, there are 36 sections discussing various topics in the field of relativistic heavy-ion collisions and related phenomena that cover a snapshot of the current experimental observations and theoretical progress. This article begins with the theoretical overview of relativistic spin-hydrodynamics in the presence of the external magnetic field, followed by the Lattice QCD results on heavy quarks in QGP, and finally, it ends with an overview of experiment results.Comment: Compilation of the contributions (148 pages) as presented in the `Hot QCD Matter 2022 conference', held from May 12 to 14, 2022, jointly organized by IIT Goa & Goa University, Goa, Indi

    The viral capsid as novel nanomaterials for drug delivery

    Get PDF
    The purpose of this review is to highlight recent scientific developments and provide an overview of virus self-assembly and viral particle dynamics. Viruses are organized supramolecular structures with distinct yet related features and functions. Plant viruses are extensively used in biotechnology, and virus-like particulate matter is generated by genetic modification. Both provide a material-based means for selective distribution and delivery of drug molecules. Through surface engineering of their capsids, virus-derived nanomaterials facilitate various potential applications for selective drug delivery. Viruses have significant implications in chemotherapy, gene transfer, vaccine production, immunotherapy and molecular imaging

    GENOME2QUNOME : Interfacing Molecules with Nanomaterials

    No full text
    The advent of technological furtherance in the biomedical sector and the renaissance of interdisciplinary science enable us to comprehend human lifestyle, and diseases at molecular and nanoscale levels. Lacking a shared theoretical foundation and terminological lexicon between various scientific domains might impede efforts to incorporate biological principles into nanoscience. In retrospect, it's possible to draw some instructive learnings from the fact that the development of contemporary nanoscience and biology was the consequence of the convergence of fields that had previously been kept separate.  In this Ph.D. thesis, I have given the catchy moniker “GENOME2QUNOME” (an acronym for "Genetic organization of multicellular organisms and their enzymatic reaction 2 Quantum nanostructured materials for energy scavenging applications"), encompassing a combinatorial approach using computational methodologies in biophysics and nano/materials science. Structure-property correlations, a unifying paradigm based on understanding how nanomaterials behave and what qualities they exhibit at the molecular and nanoscale levels, are now widely acknowledged and are critical in the incorporation of bioinspired materials into nanoscience. Therefore, a unified framework have been elucidated in this thesis for the study of nanoscale materials ranging from 0D to 3D that may be useful in combining various strategies that characterize this interdisciplinary approach.  This thesis is also a part of broader interdisciplinary research strategy aimed at depicting electronic transport in the nanoscale regime, elucidating interface mechanisms for contact electrification, and understanding the complex architectures of nanomaterials. The central hypothesis of this thesis is concentrated on the behavioral transition from the nanoscale regime to macromolecules, which is fascinating in real world scenario but theoretically challenging to bring it in reality or practice. To bridge this gap, I have made an attempt by integrating a wide range of computational methods, ranging from density functional theory (DFT) for systems with few atoms to classical dynamics dealing with billions of atoms.

    Progress in supercapacitors : roles of two dimensional nanotubular materials

    No full text
    Overcoming the global energy crisis due to vast economic expansion with the advent of human reliance on energy-consuming labor-saving devices necessitates the demand for next-generation technologies in the form of cleaner energy storage devices. The technology accelerates with the pace of developing energy storage devices to meet the requirements wherever an unanticipated burst of power is indeed needed in a very short time. Supercapacitors are predicted to be future power vehicles because they promise faster charging times and do not rely on rare elements such as lithium. At the same time, they are key nanoscale device elements for high-frequency noise filtering with the capability of storing and releasing energy by electrostatic interactions between the ions in the electrolyte and the charge accumulated at the active electrode during the charge/discharge process. There have been several developments to increase the functionality of electrodes or finding a new electrolyte for higher energy density, but this field is still open to witness the developments in reliable materials-based energy technologies. Nanoscale materials have emerged as promising candidates for the electrode choice, especially in 2D sheet and folded tubular network forms. Due to their unique hierarchical architecture, excellent electrical and mechanical properties, and high specific surface area, nanotubular networks have been widely investigated as efficient electrode materials in supercapacitors, while maintaining their inherent characteristics of high power and long cycling life. In this review, we briefly present the evolution, classification, functionality, and application of supercapacitors from the viewpoint of nanostructured materials to apprehend the mechanism and construction of advanced supercapacitors for next-generation storage devices

    Van der Waals induced molecular recognition of canonical DNA nucleobases on a 2D GaS monolayer

    No full text
    In the present study, we systematically investigated the adsorption mechanism of canonical DNA nucleobases and their two nucleobase pairs on a single-layer gallium sulfide (GaS) substrate using DFT+D3 methods. The GaS substrate has chemical interactions with molecules 0.02 |e| 0.11 |e| from molecules to the monolayer GaS surface. Due to the chemical interactions of adenine, cytosine, guanine, and thymine on the monolayer GaS surface, the work function is decreased by 0.69, 0.60, 0.97, and 0.20 eV, respectively. It is displayed that the bandgap of the monolayer GaS sheet can be significantly affected as induced molecular electronic states tend to appear near the Fermi level region due to chemical and physisorption mechanism. We have also investigated the transport properties of DNA nucleobases, namely, AT and GC pair molecules on the GaS surface, which shows significant reduction in the zero-bias transmission spectra. Moreover, with and without DNA nucleobases, namely, AT and GC pair molecules' absorptions on the GaS surface, clearly expressed in terms of distinct current signals, can be observed as ON and OFF states for this device. The distinctive nucleobase adsorption energies and different I-V responses may serve as potential probes for the selective detection of nucleobase molecules in imminent DNA sequencing applications based on a monolayer GaS surface

    Identification of a new alanine racemase in Salmonella Enteritidis and its contribution to pathogenesis

    No full text
    Abstract Background Non-typhoidal Salmonella (NTS) infections caused primarily by S. Enteritidis and S. Typhimurium particularly in immunocompromised hosts have accounted for a large percentage of fatalities in developed nations. Antibiotics have revolutionized the cure of enteric infections but have also led to the rapid emergence of pathogen resistance. New powerful therapeutics involving metabolic enzymes are expected to be potential targets for combating microbial infections and ensuring effective health management. Therefore, the need for new antimicrobials to fight such health emergencies is paramount. Enteric bacteria successfully evade the gut and colonize their hosts through specialized virulence strategies. An important player, alanine racemase is a key enzyme facilitating bacterial survival. Results This study aims at understanding the contribution of alanine racemase genes alr, dadX and SEN3897 to Salmonella survival in vitro and in vivo. We have shown SEN3897 to function as a unique alanine racemase in S. Enteritidis which displayed essential alanine racemase activity. Interestingly, the sole presence of this gene in alr dadX double mutant showed a strict dependence on d-alanine supplementation both in vitro and in vivo. However, Alr complementation in d-alanine auxotrophic strain restored the alanine racemase deficiency. The Km and Vmax of SEN3897 was 89.15 ± 10.2 mM, 400 ± 25.6 µmol/(min mg) for l-alanine and 35 ± 6 mM, 132.5 ± 11.3 µmol/(min mg) for d-alanine, respectively. In vitro assays for invasion and survival as well as in vivo virulence assays involving SEN3897 mutant showed attenuated phenotypes. Further, this study also showed attenuation of d-alanine auxotrophic strain in vivo for the development of potential targets against Salmonella that can be investigated further. Conclusion This study identified a third alanine racemase gene unique in S. Enteritidis which had a potential effect on survival and pathogenesis in vitro and in vivo. Our results also confirmed that SEN3897 by itself wasn’t able to rescue d-alanine auxotrophy in S. Enteritidis which further contributed to its virulence properties
    corecore