16 research outputs found
Lessons for the clinical nephrologist: recurrence of nephrotic syndrome induced by SARS-CoV-2
Abstract
SARS-CoV-2 is characterized by a multiorgan tropism including the kidneys. Recent autopsy series indicated that SARS-CoV-2 can infect both tubular and glomerular cells. Whereas tubular cell infiltration may contribute to acute kidney injury, data on a potential clinical correlative to glomerular affection is rare. We describe the first case of nephrotic syndrome in the context of COVID-19 in a renal transplant recipient. A 35 year old male patient received a kidney allograft for primary focal segmental glomerulosclerosis (FSGS). Three months posttransplant a recurrence of podocytopathy was successfully managed by plasma exchange, ivIG, and a conversion from tacrolimus to belatacept (initial proteinuria > 6 g/l decreased to 169 mg/l). Six weeks later he was tested positive for SARS-CoV-2 and developed a second increase of proteinuria (5.6 g/l). Renal allograft biopsy revealed diffuse podocyte effacement and was positive for SARS-CoV-2 in RNA in-situ hybridation indicating a SARS-CoV-2 associated recurrence of podocytopathy. Noteworthy, nephrotic proteinuria resolved spontaneously after recovering from COVID-19. The present case expands the spectrum of renal involvement in COVID-19 from acute tubular injury to podocytopathy in renal transplant recipients. Thus, it may be wise to test for SARS-CoV-2 prior to initiation of immunosuppression in new onset glomerulopathy during the pandemic
High incidence and viral load of HHV-6A in a multi-centre kidney transplant cohort
Human herpesvirus 6 (HHV-6) is a common opportunistic pathogen in kidney transplant recipients. Two distinct species of HHV-6, HHV-6A and HHV-6B, have been identified, of which the latter seems to be dominant. However, it is unclear whether they increase the likelihood of other viral reactivations. We characterized a multi-centre cohort of 93 patients along nine study visits for viral load. We tested for the following viruses: HHV-6A and HHV-6B, the herpesviruses cytomegalovirus (CMV) and Epstein-Barr virus (EBV) and the polyomavirus BK (BKV). We detected HHV-6A viral load in 48 (51.6%) patients, while the incidence of HHV-6B was much lower, being detected in 6 (6.5%) patients. The incidence of HHV-6A was higher than of BKV, CMV and EBV. HHV-6A also demonstrated higher viral loads than the rest of viruses. There was a non-significant trend of association between HHV-6A and HHV-6B as co-infection, whereas no increased incidence of other viruses among patients with HHV-6A reactivation was observed. There was no negative effect of high HHV-6A (>10,000 copies/ml) load on markers of renal graft and hepatic function or blood count twelve months post-transplant. In contrast to previously published data, our results show a clear dominance of HHV-6A in peripheral blood when compared to HHV-6B, with higher incidence and viral load levels. Despite the high HHV-6A loads observed, we did not identify any negative effects on posttransplant outcome
Verlauf einzelner Indikatoren der Versorgungsqualität (Wissen um die Risikofaktoren, Zielwerte, Schmerzfreiheit) bei Patienten mit typischer, atypischer Angina pectoris und nicht-kardialen Brustschmerzen
Ziel dieser Studie war die Erhebung der Versorgungsqualität im medikamentösen und präventiven Bereich bei Patienten mit einer typischen, atypischen Angina pectoris und eines uncharakteristischen Thoraxschmerzes.
Nach Einleitung einer leitliniengerechten Diagnostik und Therapie wurden 248 Patienten (82.7%) von 300, 116 davon mit einer angiographisch nachgewiesenen KHK, nach 1 Jahr reevaluiert.
Im Verlauf der Untersuchung änderten sich die Risikofaktoren (Body-Mass-Index, HbA1c, Nikotinkonsum, arterieller Hypertonus, Lipidstoffwechsel) kaum.
Trotz der VerfĂĽgbarkeit evaluierter, effektiver und effizienter MaĂźnahmen ist deren Umsetzung in die Praxis mangelhaft
Challenges associated with pancreas and kidney retransplantation
Simultaneous pancreas and kidney transplantation (SPK) is an accepted treatment for diabetic patients with renal failure, and is associated with increased survival and quality of life for recipients. There are only a few publications on the outcomes of simultaneous pancreas–kidney retransplantation (Re-SPK) after previous SPK and the loss of function of both grafts. A total of 55 patients with type 1 diabetes mellitus underwent pancreas retransplantation at our center between January 1994 and March 2021. Twenty-four of these patients underwent Re-SPK after a previous SPK. All 24 operations were technically feasible. Patient survival rate after 3 months, 1 year, and 5 years was 79.2%, 75%, and 66.7%, respectively. The causes of death were septic arterial hemorrhage ( = 3), septic multiorgan failure ( = 2), and was unknown in one patient. Pancreas and kidney graft function after 3 months, 1 year, and 5 years were 70.8% and 66.7%, 66.7% and 62.5%, and 45.8% and 54.2%, respectively. Relaparotomy was performed in 13 out of 24 (54.2%) patients. The results of our study show that Re-SPK, after previously performed SPK, is a technical and immunological challenge, associated with a significantly increased mortality and complication rate; therefore, the indication for Re-SPK should be very strict. Careful preoperative diagnosis is indispensable
Biopsy findings after detection of de novo donor-specific antibodies in renal transplant recipients: a single center experience
Background!#!De novo donor-specific antibodies (DSA) are associated with an increased risk of antibody-mediated rejection and a substantial reduction of allograft survival. We hypothesized that detection of DSA should prompt a biopsy even in the absence of proteinuria and loss of estimated glomerular filtration rate (eGFR). However, data on a population without proteinuria or loss of kidney function is scant, and this is the main novelty of our study design.!##!Methods!#!Single center retrospective analysis on biopsy findings after detection of de novo DSA. One-hundred-thirty-two kidney and pancreas-kidney transplant recipients were included. Eighty-four of these patients (63.6%) underwent allograft biopsy. At the time of biopsy n = 50 (59.5%) had a protein/creatinine ratio (PCR) > 300 mg/g creatinine and/or a loss of eGFR ≥ 10 ml/min in the previous 12 months, whereas 40.5% did not. Diagnosis of rejection was performed according to Banff criteria.!##!Results!#!Seventy-seven (91.7%) of the biopsies had signs of rejection (47.6% antibody mediated rejection (ABMR), 13.1% cellular, 20.2% combined, 10.7% borderline). Among subjects without proteinuria or loss of eGFR ≥ 10 ml/min/a (n = 34), 29 patients (85.3%) showed signs of rejection (44.1% antibody mediated (ABMR), 14.7% cellular, 11.8% combined, 14.7% borderline).!##!Conclusion!#!The majority of subjects with de novo DSA have histological signs of rejection, even in the absence of proteinuria and deterioration of graft function. Thus, it appears reasonable to routinely perform an allograft biopsy after the detection of de novo DSA
The Role of Innate Immune Cells in the Prediction of Early Renal Allograft Injury Following Kidney Transplantation
Background: Despite recent advances and refinements in perioperative management of kidney transplantation (KT), early renal graft injury (eRGI) remains a critical problem with serious impairment of graft function as well as short- and long-term outcome. Serial monitoring of peripheral blood innate immune cells might be a useful tool in predicting post-transplant eRGI and graft outcome after KT. Methods: In this prospective study, medical data of 50 consecutive patients undergoing KT at the University Hospital of Leipzig were analyzed starting at the day of KT until day 10 after the transplantation. The main outcome parameter was the occurrence of eRGI and other outcome parameters associated with graft function/outcome. eRGI was defined as graft-related complications and clinical signs of renal IRI (ischemia reperfusion injury), such as acute tubular necrosis (ATN), delayed graft function (DGF), initial nonfunction (INF) and graft rejection within 3 months following KT. Typical innate immune cells including neutrophils, natural killer (NK) cells, monocytes, basophils and dendritic cells (myeloid, plasmacytoid) were measured in all patients in peripheral blood at day 0, 1, 3, 7 and 10 after the transplantation. Receiver operating characteristics (ROC) curves were performed to assess their predictive value for eRGI. Cutoff levels were calculated with the Youden index. Significant diagnostic immunological cutoffs and other prognostic clinical factors were tested in a multivariate logistic regression model. Results: Of the 50 included patients, 23 patients developed eRGI. Mean levels of neutrophils and monocytes were significantly higher on most days in the eRGI group compared to the non-eRGI group after transplantation, whereas a significant decrease in NK cell count, basophil levels and DC counts could be found between baseline and postoperative course. ROC analysis indicated that monocytes levels on POD 7 (AUC: 0.91) and NK cell levels on POD 7 (AUC: 0.92) were highly predictive for eRGI after KT. Multivariable analysis identified recipient age (OR 1.53 (95% CI: 1.003–2.350), p = 0.040), recipient body mass index > 25 kg/m2 (OR 5.6 (95% CI: 1.36–23.9), p = 0.015), recipient cardiovascular disease (OR 8.17 (95% CI: 1.28–52.16), p = 0.026), donor age (OR 1.068 (95% CI: 1.011–1.128), p = 0.027), 9.4 × 103/μL on POD 7 (OR 16.1 (95% CI: 1.31–195.6), p = 0.031), monocytes > 1150 cells/ul on POD 7 (OR 7.81 (95% CI: 1.97–63.18), p = 0.048), NK cells < 125 cells/μL on POD 3 (OR 6.97 (95% CI: 3.81–12.7), p < 0.01), basophils < 18.1 cells/μL on POD 10 (OR 3.45 (95% CI: 1.37–12.3), p = 0.02) and mDC < 4.7 cells/μL on POD 7 (OR 11.68 (95% CI: 1.85–73.4), p < 0.01) were revealed as independent biochemical predictive variables for eRGI after KT. Conclusions: We show that the combined measurement of immunological innate variables (NK cells and monocytes on POD 7) and specific clinical factors such as prolonged CIT, increased donor and recipient age and morbidity together with deceased-donor transplantation were significant and specific predictors of eRGI following KT. We suggest that intensified monitoring of these parameters might be a helpful clinical tool in identifying patients at a higher risk of postoperative complication after KT and may therefore help to detect and—by diligent clinical management—even prevent deteriorated outcome due to IRI and eRGI after KT
The Role of Innate Immune Cells in the Prediction of Early Renal Allograft Injury Following Kidney Transplantation
Background: Despite recent advances and refinements in perioperative management of kidney transplantation (KT), early renal graft injury (eRGI) remains a critical problem with serious impairment of graft function as well as short- and long-term outcome. Serial monitoring of peripheral blood innate immune cells might be a useful tool in predicting post-transplant eRGI and graft outcome after KT. Methods: In this prospective study, medical data of 50 consecutive patients undergoing KT at the University Hospital of Leipzig were analyzed starting at the day of KT until day 10 after the transplantation. The main outcome parameter was the occurrence of eRGI and other outcome parameters associated with graft function/outcome. eRGI was defined as graft-related complications and clinical signs of renal IRI (ischemia reperfusion injury), such as acute tubular necrosis (ATN), delayed graft function (DGF), initial nonfunction (INF) and graft rejection within 3 months following KT. Typical innate immune cells including neutrophils, natural killer (NK) cells, monocytes, basophils and dendritic cells (myeloid, plasmacytoid) were measured in all patients in peripheral blood at day 0, 1, 3, 7 and 10 after the transplantation. Receiver operating characteristics (ROC) curves were performed to assess their predictive value for eRGI. Cutoff levels were calculated with the Youden index. Significant diagnostic immunological cutoffs and other prognostic clinical factors were tested in a multivariate logistic regression model. Results: Of the 50 included patients, 23 patients developed eRGI. Mean levels of neutrophils and monocytes were significantly higher on most days in the eRGI group compared to the non-eRGI group after transplantation, whereas a significant decrease in NK cell count, basophil levels and DC counts could be found between baseline and postoperative course. ROC analysis indicated that monocytes levels on POD 7 (AUC: 0.91) and NK cell levels on POD 7 (AUC: 0.92) were highly predictive for eRGI after KT. Multivariable analysis identified recipient age (OR 1.53 (95% CI: 1.003–2.350), p = 0.040), recipient body mass index > 25 kg/m2 (OR 5.6 (95% CI: 1.36–23.9), p = 0.015), recipient cardiovascular disease (OR 8.17 (95% CI: 1.28–52.16), p = 0.026), donor age (OR 1.068 (95% CI: 1.011–1.128), p = 0.027), p = 0.027) and cold ischemia time (CIT) of the renal graft (OR 1.005 (95% CI: 1.001–1.01), p = 0.019) as clinically relevant prognostic factors associated with increased eRGI following KT. Further, neutrophils > 9.4 × 103/μL on POD 7 (OR 16.1 (95% CI: 1.31–195.6), p = 0.031), monocytes > 1150 cells/ul on POD 7 (OR 7.81 (95% CI: 1.97–63.18), p = 0.048), NK cells p p = 0.02) and mDC p < 0.01) were revealed as independent biochemical predictive variables for eRGI after KT. Conclusions: We show that the combined measurement of immunological innate variables (NK cells and monocytes on POD 7) and specific clinical factors such as prolonged CIT, increased donor and recipient age and morbidity together with deceased-donor transplantation were significant and specific predictors of eRGI following KT. We suggest that intensified monitoring of these parameters might be a helpful clinical tool in identifying patients at a higher risk of postoperative complication after KT and may therefore help to detect and—by diligent clinical management—even prevent deteriorated outcome due to IRI and eRGI after KT
Lessons for the clinical nephrologist: recurrence of nephrotic syndrome induced by SARS-CoV-2
SARS-CoV-2 is characterized by a multiorgan tropism including the kidneys. Recent autopsy series indicated that SARS-CoV-2 can infect both tubular and glomerular cells. Whereas tubular cell infiltration may contribute to acute kidney injury, data on a potential clinical correlative to glomerular affection is rare. We describe the first case of nephrotic syndrome in the context of COVID-19 in a renal transplant recipient. A 35 year old male patient received a kidney allograft for primary focal segmental glomerulosclerosis (FSGS). Three months posttransplant a recurrence of podocytopathy was successfully managed by plasma exchange, ivIG, and a conversion from tacrolimus to belatacept (initial proteinuria &gt; 6 g/l decreased to 169 mg/l). Six weeks later he was tested positive for SARS-CoV-2 and developed a second increase of proteinuria (5.6 g/l). Renal allograft biopsy revealed diffuse podocyte effacement and was positive for SARS-CoV-2 in RNA in-situ hybridation indicating a SARS-CoV-2 associated recurrence of podocytopathy. Noteworthy, nephrotic proteinuria resolved spontaneously after recovering from COVID-19. The present case expands the spectrum of renal involvement in COVID-19 from acute tubular injury to podocytopathy in renal transplant recipients. Thus, it may be wise to test for SARS-CoV-2 prior to initiation of immunosuppression in new onset glomerulopathy during the pandemic
Biopsy findings after detection of de novo donor-specific antibodies in renal transplant recipients
De novo donor-specific antibodies (DSA) are associated with an increased risk of antibody-mediated rejection and a substantial reduction of allograft survival. We hypothesized that detection of DSA should prompt a biopsy even in the absence of proteinuria and loss of estimated glomerular filtration rate (eGFR). However, data on a population without proteinuria or loss of kidney function is scant, and this is the main novelty of our study design.
Single center retrospective analysis on biopsy findings after detection of de novo DSA. One-hundred-thirty-two kidney and pancreas-kidney transplant recipients were included. Eighty-four of these patients (63.6%) underwent allograft biopsy. At the time of biopsy n = 50 (59.5%) had a protein/creatinine ratio (PCR) > 300 mg/g creatinine and/or a loss of eGFR  10 ml/min in the previous 12 months, whereas 40.5% did not. Diagnosis of rejection was performed according to Banff criteria.
Seventy-seven (91.7%) of the biopsies had signs of rejection (47.6% antibody mediated rejection (ABMR), 13.1% cellular, 20.2% combined, 10.7% borderline). Among subjects without proteinuria or loss of eGFR  10 ml/min/a (n = 34), 29 patients (85.3%) showed signs of rejection (44.1% antibody mediated (ABMR), 14.7% cellular, 11.8% combined, 14.7% borderline).
The majority of subjects with de novo DSA have histological signs of rejection, even in the absence of proteinuria and deterioration of graft function. Thus, it appears reasonable to routinely perform an allograft biopsy after the detection of de novo DSA