3,632 research outputs found

    Numerical Investigation of a Two-Phase Nanofluid Model for Boundary Layer Flow Past a Variable Thickness Sheet

    Get PDF
    Abstract This paper investigates heat and mass transfer of nanofluid over a stretching sheet with variable thickness. The techniques of similarity transformation and homotopy analysis method are used to find solutions. Velocity, temperature, and concentration fields are examined with the variations of governing parameters. Local Nusselt number and Sherwood number are compared for different values of variable thickness parameter. The results show that there exists a critical value of thickness parameter β c (β c ≈0.7) where the Sherwood number achieves its maximum at the critical value β c . For β&gt;β c , the distribution of nanoparticle volume fraction decreases near the surface but exhibits an opposite trend far from the surface.</jats:p

    Effects of fractional mass transfer and chemical reaction on MHD flow in a heterogeneous porous medium

    Get PDF
    This paper presents a study on space fractional anomalous convective-diffusion and chemical reaction in the magneto-hydrodynamic fluid over an unsteady stretching sheet. The fractional diffusion model is derived from decoupled continuous time random walks in a heterogeneous porous medium. A novel transformation which features time finite difference is introduced to reduce the governing equations into ordinary differential ones in each time level. Numerical solutions are established by an implicit finite difference scheme. The stability and convergence of the method are analyzed. Results show that increasing fractional derivative parameter enhances concentration near the surface while an opposite phenomenon occurs far away from the wall. There is a reduction of mass transfer rate on the sheet with an increase in the fractional derivative parameter. Moreover, the numerical solutions are compared with exact solutions and good agreement has been observed.</p

    Anomalous diffusion in rotating Casson fluid through a porous medium

    Get PDF
    This paper investigates the space-fractional anomalous diffusion in unsteady Casson fluid through a porous medium, based on an uncoupled continuous time random walk. The influences of binary chemical reaction and activation energy between two horizontal rotating parallel plates are taken into account. The governing equations of motion are reduced to a set of nonlinear differential equations by time derivatives discretization and generalized transformation, which are solved by bvp4c and implicit finite difference method (IFDM). Stability and convergence of IFDM are proved and some numerical comparisons to the previous study are presented with excellent agreement. The effects of involved physical parameters such as fractional derivative parameter, rotation parameter and time parameter are presented and analyzed through graphs. Results indicate that the increase of fractional derivative parameter triggers concentration increase near the lower plate, while it causes a reduction near the upper plate. It is worth mentioning that the decrease of heat transfer rate on the plate is observed with the higher time parameter.</p

    Searching for lepton portal dark matter with colliders and gravitational waves

    Full text link
    We study the lepton portal dark matter (DM) model in which the relic abundance is determined by the portal coupling among the Majorana fermion DM candidate χ\chi, the singlet charged scalar mediator S±S^\pm and the Standard Model (SM) right-handed lepton. The direct and indirect searches are not sensitive to this model. This article studies the lepton portal coupling as well as the scalar portal coupling (between S±S^\pm and SM Higgs boson), as the latter is generally allowed in the Lagrangian. The inclusion of scalar portal coupling not only significantly enhances the LHC reach via the gg→h∗→S+S−gg\to h^*\to S^+S^- process, but also provides a few novel signal channels, such as the exotic decays and coupling deviations of the Higgs boson, offering new opportunities to probe the model. In addition, we also study the Drell-Yan production of S+S−S^+S^- at future lepton colliders, and find out that the scenario where one S±S^\pm is off-shell can be used to measure the lepton portal coupling directly. In particular, we are interested in the possibility that the scalar potential triggers a first-order phase transition and hence provides the stochastic gravitational wave (GW) signals. In this case, the terrestrial collider experiments and space-based GW detectors serve as complementary approaches to probe the model.Comment: 23 pages+references, 15 figures. To appear on JHE

    Time-varying resonant mass at collider and beam dump experiments

    Get PDF
    A new particle usually manifests itself as a single resonant peak located at its mass. We propose if the new particle mass is time-varying due to environmental effects, then its mass spectrum typically has a novel double-peak feature. A representative model is the kinetic mixing dark photon interacting with an ultralight complex scalar dark matter charged under U(1)\u27. We reanalyze the existing experiments, showing the constraints on such a model are drastically weakened than those on the traditional single-peak resonance model, due to the reduction of the luminosity exposure in each resonant mass bin. Consequently, for mass around tens of MeV, the muon gμ -2 solution from the kinetic mixing dark photon becomes viable again. The scenario can be further tested by reanalyzing the existing data with timing information included
    • …
    corecore