39,288 research outputs found

    A dc-coupled noninverting one-shot Patent

    Get PDF
    Transistorized dc-coupled multivibrator with noninverted output signa

    Estimating factor models for multivariate volatilities : an innovation expansion method

    Get PDF
    We introduce an innovation expansion method for estimation of factor models for conditional variance (volatility) of a multivariate time series. We estimate the factor loading space and the number of factors by a stepwise optimization algorithm on expanding the "white noise space". Simulation and a real data example are given for illustration

    Reactively sputtered RuO2 diffusion barriers

    Get PDF
    The thermal stability of reactively sputtered RuO2 films is investigated from the point of view of their application as diffusion barriers in silicon contact metallizations with an Al overlayer. Backscattering spectra of Si/RuO2/Al samples and electrical measurements on shallow junction diodes with Si/TiSi2.3/RuO2/Al contacts both show that RuO2 films are effective diffusion barriers between Al and Si for 30-min annealing at temperatures as high as 600°C

    Exact isovector pairing in a shell-model framework: Role of proton-neutron correlations in isobaric analog states

    Get PDF
    We utilize a nuclear shell model Hamiltonian with only two adjustable parameters to generate, for the first time, exact solutions for pairing correlations for light to medium-mass nuclei, including the challenging proton-neutron pairs, while also identifying the primary physics involved. In addition to single-particle energy and Coulomb potential terms, the shell model Hamiltonian consists of an isovector T=1T=1 pairing interaction and an average proton-neutron isoscalar T=0T=0 interaction, where the T=0T=0 term describes the average interaction between non-paired protons and neutrons. This Hamiltonian is exactly solvable, where, utilizing 3 to 7 single-particle energy levels, we reproduce experimental data for 0+^+ state energies for isotopes with mass A=10A=10 through A=62A=62 exceptionally well including isotopes from He to Ge. Additionally, we isolate effects due to like-particle and proton-neutron pairing, provide estimates for the total and proton-neutron pairing gaps, and reproduce NN (neutron) = ZZ (proton) irregularity. These results provide a further understanding for the key role of proton-neutron pairing correlations in nuclei, which is especially important for waiting-point nuclei on the rp-path of nucleosynthesis.Comment: 10 pages, 4 figure

    Microscopic origin of the next generation fractional quantum Hall effect

    Full text link
    Most of the fractions observed to date belong to the sequences ν=n/(2pn±1)\nu=n/(2pn\pm 1) and ν=1−n/(2pn±1)\nu=1-n/(2pn\pm 1), nn and pp integers, understood as the familiar {\em integral} quantum Hall effect of composite fermions. These sequences fail to accommodate, however, many fractions such as ν=4/11\nu=4/11 and 5/13, discovered recently in ultra-high mobility samples at very low temperatures. We show that these "next generation" fractional quantum Hall states are accurately described as the {\em fractional} quantum Hall effect of composite fermions

    Donor species complement after liver xenotransplantation: The mechanism of protection from hyperacute rejection

    Get PDF
    Hamster hearts transplanted into stable rat recipients of hamster livers (OLT rats) were hyperacutely rejected after transfer with unaltered rat antihamster hyperimmune serum (HS). This was followed by immediate liver xenograft rejection in 4 of 5 rats. In contrast, simple heat inactivation of the rat HS resulted in prolonged survival of hamster hearts to 25 days without deterioration effect in the liver xenografts. This effect was species-specific because third-party mouse heart grafts in OLT rats were hyperacutely rejected in minutes if either active or heat inactivated antimouse HS was given. In cytotoxicity experiments, the complement in OLT serum produced weak lysis of hamster lymphocytes, while efficiently doing so with mouse cell targets. Because normal hamster serum caused no lysis at all of hamster target cells, the residual low-grade lysis of OLT serum was possibly being mediated by extrahepatic sources of rat C. In conclusion, the homology of C and target cells represents a mechanism of protection that the liver confers to other organs, and that is most easily seen in xenografts but may be allospecifically operational with allografts as well within the limits of MHC restriction. © 1994 by Williams and Wilkins

    New Anisotropic Behavior of Quantum Hall Resistance in (110) GaAs Heterostructures at mK Temperatures and Fractional Filling Factors

    Full text link
    Transport experiments in high mobility (110) GaAs heterostructures have been performed at very low temperatures 8 mK. At higher Landau-Levels we observe a transport anisotropy that bears some similarity with what is already seen at half-odd-integer filling on (001) oriented substrates. In addition we report the first observation of transport anisotropies within the lowest Landau-Level. This remarkable new anisotropy is independent of the current direction and depends on the polarity of the magnetic field.Comment: 3 Pages, 4 figures, Latex, uses elsart.cls and physart.cls, to be published in Physica E Added reference, made contact configuration more clea
    • …
    corecore