134 research outputs found

    Trafficking of central opioid receptors and descending pain inhibition

    Get PDF
    The delta-opioid receptor (DOR) belongs to the superfamily of G-protein-coupled receptors (GPCRs) with seven transmembrane domains, and its membrane trafficking is regulated by intracellular sorting processes involving its C-tail motifs, intracellular sorting proteins, and several intracellular signaling pathways. In the quiescent state, DOR is generally located in the intracellular compartments in central neurons. However, chronic stimulation, such as chronic pain and sustained opioid exposure, may induce membrane trafficking of DOR and its translocation to surface membrane. The emerged functional DOR on cell membrane is actively involved in pain modulation and opioid analgesia. This article reviews current understanding of the mechanisms underlying GPCRs and DOR membrane trafficking, and the analgesic function of emerged DOR through membrane trafficking under certain pathophysiological circumstances

    Increased glutamate synaptic transmission in the nucleus raphe magnus neurons from morphine-tolerant rats

    Get PDF
    Currently, opioid-based drugs are the most effective pain relievers that are widely used in the treatment of pain. However, the analgesic efficacy of opioids is significantly limited by the development of tolerance after repeated opioid administration. Glutamate receptors have been reported to critically participate in the development and maintenance of opioid tolerance, but the underlying mechanisms remain unclear. Using whole-cell voltage-clamp recordings in brainstem slices, the present study investigated chronic morphine-induced adaptations in glutamatergic synaptic transmission in neurons of the nucleus raphe magnus (NRM), a key supraspinal relay for pain modulation and opioid analgesia. Chronic morphine significantly increased glutamate synaptic transmission exclusively in one class of NRM cells that contains μ-opioid receptors in a morphine-tolerant state. The adenylyl cyclase activator forskolin and the cAMP analog 8-bromo-cAMP mimicked the chronic morphine effect in control neurons and their potency in enhancing the glutamate synaptic current was significantly increased in neurons from morphine-tolerant rats. MDL12330a, an adenylyl cyclase inhibitor, and H89, a protein kinase A (PKA) inhibitor, reversed the increase in glutamate synaptic transmission induced by chronic morphine. In addition, PMA, a phorbol ester activator of protein kinase C (PKC), also showed an increased potency in enhancing the glutamate synaptic current in these morphine-tolerant cells. The PKC inhibitor GF109203X attenuated the chronic morphine effect. Taken together, these results suggest that chronic morphine increases presynaptic glutamate release in μ receptor-containing NRM neurons in a morphine-tolerant state, and that the increased glutamate synaptic transmission appears to involve an upregulation of both the cAMP/PKA pathway and the PKC pathway. This glutamate-mediated activation of these NRM neurons that are thought to facilitate spinal pain transmission may contribute to the reduced opioid analgesia during opioid tolerance

    The projection from dorsal medial prefrontal cortex to basolateral amygdala promotes behaviors of negative emotion in rats

    Get PDF
    Brain circuits between medial prefrontal cortex (mPFC) and amygdala have been implicated in cortical control of emotion, especially anxiety. Studies in recent years focus on differential roles of subregions of mPFC and amygdala, and reciprocal pathways between mPFC and amygdala in regulation of emotional behaviors. It has been shown that, while the projection from ventral mPFC to basomedial amygdala has an anxiolytic effect, the reciprocal projections between dorsal mPFC (dmPFC) and basolateral amygdala (BLA) are generally involved in an anxiogenic effect in various conditions with increased anxiety. However, the function of the projection from dmPFC to BLA in regulation of general emotional behaviors under normal conditions remains unclear. In this study, we used optogenetic analysis to identify how this dmPFC–BLA pathway regulates various emotional behaviors in normal rats. We found that optogenetic stimulation of the dmPFC–BLA pathway promoted a behavioral state of negative emotion, increasing anxiety-like and depressive-like behaviors and producing aversive behavior of place avoidance. Conversely, optogenetic inhibition of this pathway produced opposite effects, reducing anxiety-like and depressive-like behaviors, and inducing behaviors of place preference of reward. These findings suggest that activity of the dmPFC–BLA pathway is sufficient to drive a negative emotion state and the mPFC–amygdala circuit is tonically active in cortical regulation of emotional behaviors

    Efficacy and safety of a NiTi CAR 27 compression ring for end-to-end anastomosis compared with conventional staplers: A real-world analysis in Chinese colorectal cancer patients

    Get PDF
    OBJECTIVES: This study aimed to evaluate the safety and efficacy of a new nickel-titanium shape memory alloy compression anastomosis ring, NiTi CAR 27, in constructing an anastomosis for colorectal cancer resection compared with conventional staples. METHODS: In total, 234 consecutive patients diagnosed with colorectal cancer receiving sigmoidectomy and anterior resection for end-to-end anastomosis from May 2010 to June 2012 were retrospectively analyzed. The postoperative clinical parameters, postoperative complications and 3-year overall survival in 77 patients using a NiTi CAR 27 compression ring (CAR group) and 157 patients with conventional circular staplers (STA group) were compared. RESULTS: There were no statistically significant differences between the patients in the two groups in terms of general demographics and tumor features. A clinically apparent anastomotic leak occurred in 2 patients (2.6%) in the CAR group and in 5 patients (3.2%) in the STA group (p=0.804). These eight patients received a temporary diverting ileostomy. One patient (1.3%) in the CAR group was diagnosed with anastomotic stricture through an electronic colonoscopy after 3 months postoperatively. The incidence of postoperative intestinal obstruction was comparable between the two groups (p=0.192). With a median follow-up duration of 39.6 months, the 3-year overall survival rate was 83.1% in the CAR group and 89.0% in the STA group (p=0.152). CONCLUSIONS: NiTi CAR 27 is safe and effective for colorectal end-to-end anastomosis. Its use is equivalent to that of the conventional circular staplers. This study suggests that NiTi CAR 27 may be a beneficial alternative in colorectal anastomosis in Chinese colorectal cancer patients

    Clinical factors of post-chemoradiotherapy as valuable indicators for pathological complete response in locally advanced rectal cancer

    Get PDF
    OBJECTIVES: Pathological complete response has shown a better prognosis for patients with locally advanced rectal cancer after preoperative chemoradiotherapy. However, correlations between post-chemoradiotherapy clinical factors and pathologic complete response are not well confirmed. The aim of the current study was to identify post-chemoradiotherapy clinical factors that could serve as indicators of pathologic complete response in locally advanced rectal cancer. METHODS: This study retrospectively analyzed 544 consecutive patients with locally advanced rectal cancer treated at Sun Yat-sen University Cancer Center from December 2003 to June 2014. All patients received preoperative chemoradiotherapy followed by surgery. Univariate and multivariate regression analyses were performed to identify post-chemoradiotherapy clinical factors that are significant indicators of pathologic complete response. RESULTS: In this study, 126 of 544 patients (23.2%) achieved pathological complete response. In multivariate analyses, increased pathological complete response rate was significantly associated with the following factors: post-chemoradiotherapy clinical T stage 0-2 (odds ratio=2.098, 95% confidence interval=1.023-4.304, p=0.043), post-chemoradiotherapy clinical N stage 0 (odds ratio=2.011, 95% confidence interval=1.264-3.201, p=0.003), interval from completion of preoperative chemoradiotherapy to surgery of >;7 weeks (odds ratio=1.795, 95% confidence interval=1.151-2.801, p=0.010) and post-chemoradiotherapy carcinoembryonic antigen ≤2 ng/ml (odds ratio=1.579, 95% confidence interval=1.026-2.432, p=0.038). CONCLUSIONS: Post-chemoradiotherapy clinical T stage 0-2, post-chemoradiotherapy clinical N stage 0, interval from completion of chemoradiotherapy to surgery of >;7 weeks and post-chemoradiotherapy carcinoembryonic antigen ≤2 ng/ml were independent clinical indicators for pathological complete response. These findings demonstrate that post-chemoradiotherapy clinical factors could be valuable for post-operative assessment of pathological complete response

    Effect of Grain Coalescence on Dislocation and Stress Evolution of GaN Films Grown on Nanoscale Patterned Sapphire Substrates

    Full text link
    Two types of nucleation layers (NLs), including in-situ low-temperature grown GaN (LT-GaN) and ex-situ sputtered physical vapor deposition AlN (PVD-AlN), are applied on cone-shaped nanoscale patterned sapphire substrate (NPSS). The initial growth process of GaN on these two NLs is comparably investigated by a series of growth interruptions. The coalescence process of GaN grains is modulated by adjusting the three-dimensional (3D) temperatures. The results indicate that higher 3D temperatures reduce the edge dislocation density while increasing the residual compressive stress in GaN films. Compared to the LT-GaN NLs, the PVD-AlN NLs effectively resist Ostwald ripening and facilitate the uniform growth of GaN grains on NPSS. Furthermore, GaN films grown on NPSS with PVD-AlN NLs exhibit a reduction of over 50% in both screw and edge dislocation densities compared to those grown on LT-GaN NLs. Additionally, PVD-AlN NLs result in an increase of about 0.5 GPa in the residual compressive stress observed in GaN films

    Delineating the molecular landscape of different histopathological growth patterns in colorectal cancer liver metastases

    Get PDF
    BackgroundHistopathological growth patterns (HGPs) have shown important prognostic values for patients with colorectal cancer liver metastases, but the potential molecular mechanisms remain largely unknown.MethodsWe performed an exploratory analysis by conducting the RNA sequencing of primary colorectal lesions, colorectal liver metastatic lesions and normal liver tissues.FindingsWe found that desmoplastic HGPs of the metastatic lesions were significantly enriched in EMT, angiogenesis, stroma, and immune signaling pathways, while replacement HGPs were enriched in metabolism, cell cycle, and DNA damage repair pathways. With the exception of immune-related genes, the differentially expressed genes of the two HGPs from colorectal liver metastases were mostly inherited from the primary tumor. Moreover, normal liver tissue in the desmoplastic HGP subgroup was markedly enriched in the fibrinous inflammation pathway.ConclusionsWe surmised that HGPs are observable morphological changes resulting from the regulation of molecular expressions, which is the combined effect of the heterogeneity and remodeling of primary tumors seeds and liver soils

    CBX4-mediated SUMO modification regulates BMI1 recruitment at sites of DNA damage

    Get PDF
    Polycomb group (PcG) proteins are involved in epigenetic silencing where they function as major determinants of cell identity, stem cell pluripotency and the epigenetic gene silencing involved in cancer development. Recently numerous PcG proteins, including CBX4, have been shown to accumulate at sites of DNA damage. However, it remains unclear whether or not CBX4 or its E3 sumo ligase activity is directly involved in the DNA damage response (DDR). Here we define a novel role for CBX4 as an early DDR protein that mediates SUMO conjugation at sites of DNA lesions. DNA damage stimulates sumoylation of BMI1 by CBX4 at lysine 88, which is required for the accumulation of BMI1 at DNA damage sites. Moreover, we establish that CBX4 recruitment to the sites of laser micro-irradiation-induced DNA damage requires PARP activity but does not require H2AX, RNF8, BMI1 nor PI-3-related kinases. The importance of CBX4 in the DDR was confirmed by the depletion of CBX4, which resulted in decreased cellular resistance to ionizing radiation. Our results reveal a direct role for CBX4 in the DDR pathway

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve
    corecore