71 research outputs found

    A permeability model for the hydraulic fracture filled with proppant packs under combined effect of compaction and embedment

    Get PDF
    The authors acknowledge the financial support from Science Foundation of China University of Petroleum, Beijing (No. 2462014YJRC060 and No.2462014YJRC059)Peer reviewedPostprin

    Effects of pore connectivity and water saturation on matrix permeability of deep gas shale

    Get PDF
    Shale matrix permeability is an important indicator for evaluating gas transport and production. However, the effects of pore connectivity and water saturation on the matrix permeability in deep gas shales have not been adequately studied. In this study, the permeability of deep shales in the Yichang area of the Middle Yangtze was characterized using three methods. These included the determination of apparent permeability in different directions via pulse-decay, also matrix permeability obtained via the Gas Research Institute method, and the connected pore network permeability via the mercury injection capillary pressure technique. The results revealed a signiļ¬cant difference between the horizontal and vertical permeability of deep shales. The smaller the size of the multiple connected pore network, the larger was the effective tortuosity and the lower the permeability. Comparison of the three permeabilities and combined microscopic observations revealed that microfractures and laminae were the dominant gas transport channels. Importantly, the matrix permeability decreased exponentially with increasing water saturation, with water vapor adsorption experiments revealing that water occupation of pores and pore-throat spaces smaller than 10 nm in diameter was the main reason for this decrease in matrix permeability. Collectively, proposed method of evaluating effective permeability with an index for shale gas reservoirs is signiļ¬cant for sweet spot selection and production prediction of shale gas reservoirs around the globe.Cited as: Zhao, J., Sun, M., Pan, Z., Liu, B., Ostadhassan, M., Hu, Q. Effects of pore connectivity and water saturation on matrix permeability of deep gas shale. Advances in Geo-Energy Research, 2022, 6(1): 54-68. https://doi.org/10.46690/ager.2022.01.0

    Characterization of coal fines generation: a micro-scale investigation

    Get PDF
    Coal fines are commonly generated as by-product during coalbed methane production mainly due to the interaction of coal with inseam water flow. A portion of the created coal fines may settle and plug the coal cleats and hydraulic fractures due to the gravity and coal pore size constraint. This could result in the reduction of coal permeability and blockage of coalbed methane wells or gas drainage boreholes. Despite the increasing awareness of the importance of understanding coal fines, limited research has been carried out on the characterization of coal fines creation. This study aimed to numerically characterize the generation process of coal fines in micro-scale coal cleats. The Scanning Electron Microscopy (SEM) images for a coal sample from Bulli Seam of the Sydney Basin in Australia were obtained and analysed to determine the actual cleat geometries and the characteristics of coal fines distribution. Then a fully coupled fluid-structure numerical model was developed to identify the creation process of coal fines at micro-scale. The impact of pertinent production conditions on coal fines generation was studied, including production pressure drawdown, temperature, coal fines Young's modulus and strength. The SEM images revealed that the particle size distributions of the coal fines in the examined cleats were in the order of hundreds of nanometres to several microns. The results of the numerical studies showed the coal fines production increased with pressure build-up, and decreased with increasing coal fines strength with more sensitivity compared with pressure. Critical values for production pressure drawdown were obtained, above which failure area began to expand; threshold values were also determined, below which remarkable reduction of coal fines production was achieved. Coal cleat geometry plays an important role in determining coal fines production. It was noted that exposed microstructures, cleat elbow regions and micro-fracture tips are more likely to generate coal fines. Based on these findings, guidance can be provided on the control of production conditions to mitigate coal fines issue, and new insight into where and how coal fines are created by inseam water flow can be achieved. (C) 2015 Elsevier B.V. All rights reserved

    Characterisation of creep in coal and its impact on permeability: An experimental study

    Get PDF
    Creep is a time-dependent deformation that affects coal permeability and should be considered in the prediction of Coalbed Methane (CBM) production. This study experimentally characterises and quantifies the impact of creep on coal permeability. The experiments were conducted on a bituminous coal sample, excavated from Bowen Basin, Australia, using a triaxial gas rig equipped with strain and displacement transducers. Two different types of gases (helium and methane) were injected into the sample under various stress and pore pressure conditions. It was found that for the experiments with helium, creep caused permanent partial closure of cleats and pathways under constant effective stress, and hence a reduction in permeability. Under hydrostatic stress only, a Residual Deformation Ratio (RDR) of 14.1% and a Permeability Loss Ratio (PLR) of 71% were found following the removal of the axial load. This can be due to the damage to coal microstructure along with closure of cleats. For the experiments with methane, coal experienced an instantaneous elastic deformation, at the onset of pore pressure depletion, followed by consolidation and matrix shrinkage. Then, creep occurred when gas desorption ceased. A total permeability loss of 26% was achieved due to an increase of 1.91 MPa in effective stress caused by gas desorption. In addition, the model previously developed by authors was validated against the experimental permeability data. A good agreement was found between the model-predicted permeability data and the experimental permeability data, particularly for higher pore pressure ranges

    Wave-Packet Surface Propagation for Light-Induced Molecular Dissociation

    Full text link
    Recent advances in laser technology have enabled tremendous progress in photochemistry, at the heart of which is the breaking and formation of chemical bonds. Such progress has been greatly facilitated by the development of accurate quantum-mechanical simulation method, which, however, does not necessarily accompany clear dynamical scenarios and is rather often a black box, other than being computationally heavy. Here, we develop a wave-packet surface propagation (WASP) approach to describe the molecular bond-breaking dynamics from a hybrid quantum-classical perspective. Via the introduction of quantum elements including state transitions and phase accumulations to the Newtonian propagation of the nuclear wave-packet, the WASP approach naturally comes with intuitive physical scenarios and accuracies. It is carefully benchmarked with the H2+ molecule and is shown to be capable of precisely reproducing experimental observations. The WASP method is promising for the intuitive visualization of strong-field molecular dynamics and is straightforwardly extensible toward complex molecules.Comment: 24 pages, 4 figure

    The promise and challenges of utility-scale compressed air energy storage in aquifers

    Get PDF
    Widely distributed aquifers have been proposed as effective storage reservoirs for compressed air energy storage (CAES). This aims to overcome the limitations of geological conditions for conventional utility-scale CAES, which has to date used caverns as the storage reservoirs. As a promising technology, compressed air energy storage in aquifers (CAESA) has received increasing attention as a potential method to deal with the intermittent nature of solar or wind energy sources. This article presents a selective review of theoretical and numerical modeling studies as well as field tests, along with efficiency and economic analyses, to assess the feasibility of the emerging technology. Although some field tests suggest that a large bubble could be created in aquifers to sustain the working cycles at target rates, challenges remain before the technology can be recommended for wide deployment. The geological critical safety factors affecting the gas bubble development and sustainability of operation cycles include the geological structure, aquifer depth, and hydrodynamic and mechanical properties, such as porosity, permeability, compressibility, and mineral composition. Moreover, the injection/withdrawal well configurations and oxidation reactions caused by the oxygen in compressed air should also be considered. The failed attempt of renewable energy combined with CAESA in Iowa is described and the lessons learned are summarized. Combining CAESA with thermal storage, using CO2 as cushion gas, horizontal wells or hydraulic fracturing, and man-made boundaries are proposed to improve CAESA efficiency but need further study for future applications

    Upregulation of Cyclin B1 by miRNA and its implications in cancer

    Get PDF
    It is largely recognized that microRNAs (miRNAs) function to silence gene expression by targeting 3ā€²UTR regions. However, miRNAs have also been implicated to positively-regulate gene expression by targeting promoter elements, a phenomenon known as RNA activation (RNAa). In the present study, we show that expression of mouse Cyclin B1 (Ccnb1) is dependent on key factors involved in miRNA biogenesis and function (i.e. Dicer, Drosha, Ago1 and Ago2). In silico analysis identifies highly-complementary sites for 21 miRNAs in the Ccnb1 promoter. Experimental validation identified three miRNAs (miR-744, miR-1186 and miR-466d-3p) that induce Ccnb1 expression in mouse cell lines. Conversely, knockdown of endogenous miR-744 led to decreased Ccnb1 levels. Chromatin immunoprecipitation (ChIP) analysis revealed that Ago1 was selectively associated with the Ccnb1 promoter and miR-744 increased enrichment of RNA polymerase II (RNAP II) and trimethylation of histone 3 at lysine 4 (H3K4me3) at the Ccnb1 transcription start site. Functionally, short-term overexpression of miR-744 and miR-1186 resulted in enhanced cell proliferation, while prolonged expression caused chromosomal instability and in vivo tumor suppression. Such phenotypes were recapitulated by overexpression of Ccnb1. Our findings reveal an endogenous system by which miRNA functions to activate Ccnb1 expression in mouse cells and manipulate in vivo tumor development/growth
    • ā€¦
    corecore