37 research outputs found

    Low-Confidence Samples Mining for Semi-supervised Object Detection

    Full text link
    Reliable pseudo-labels from unlabeled data play a key role in semi-supervised object detection (SSOD). However, the state-of-the-art SSOD methods all rely on pseudo-labels with high confidence, which ignore valuable pseudo-labels with lower confidence. Additionally, the insufficient excavation for unlabeled data results in an excessively low recall rate thus hurting the network training. In this paper, we propose a novel Low-confidence Samples Mining (LSM) method to utilize low-confidence pseudo-labels efficiently. Specifically, we develop an additional pseudo information mining (PIM) branch on account of low-resolution feature maps to extract reliable large-area instances, the IoUs of which are higher than small-area ones. Owing to the complementary predictions between PIM and the main branch, we further design self-distillation (SD) to compensate for both in a mutually-learning manner. Meanwhile, the extensibility of the above approaches enables our LSM to apply to Faster-RCNN and Deformable-DETR respectively. On the MS-COCO benchmark, our method achieves 3.54% mAP improvement over state-of-the-art methods under 5% labeling ratios

    Epitaxial antiperovskite/perovskite heterostructures for materials design

    Full text link
    We demonstrate fabrication of atomically sharp interfaces between nitride antiperovskite Mn3_{3}GaN and oxide perovskites (La0.3_{0.3}Sr0.7_{0.7})(Al0.65_{0.65}Ta0.35_{0.35})O3_{3} (LSAT) and SrTiO3_{3} as paradigms of nitride-antiperovskite/oxide-perovskite heterostructures. Using a combination of scanning transmission electron microscopy (STEM), atomic-resolution spectroscopic techniques, and first-principle calculations, we investigated the atomic-scale structure, composition, and boding at the interface. We show that the epitaxial growth between the antiperovskite and perovskite compounds is mediated by a coherent interfacial monolayer that connects the two anti-structures. We anticipate our results to be a major step for the development of functional antiperovskite/perovskite heterostructures opening to harness a combination of their functional properties including topological properties for ultra low power applications

    Impact of emission controls on air quality in Beijing during APEC 2014: implications from water-soluble ions and carbonaceous aerosol in PM2.5 and their precursors

    Get PDF
    Stringent emission controls during the Asia Pacific Economic Cooperation Summit (APEC; November 5–11, 2014) provide a valuable opportunity to examine the impact of such measures on the chemical properties of PM2.5 and other air pollutants. Here, we measured the water-soluble inorganic ions (WSII) and carbonaceous species in PM2.5, NH3 and NO2 at multiple sites in Beijing between September and November 2014. Relative to the pre-APEC period (September and October 2014), significant reductions in the average concentrations of WSII (69% for NO3−, 68% for SO42−, 78% for NH4+, and 29–71% for other species), elemental carbon (EC, 43%) and organic carbon (OC, 45%) in PM2.5 were found during the APEC period. The contributions of secondary inorganic ions (SIA, including SO42−, NO3−, and NH4+) to PM2.5 were significantly lower during the APEC period (9–44%), indicating a combination of lower gaseous precursor emissions and a relative weak secondary aerosol formation. Ion-balance calculations indicated that the PM2.5 sample in the pre-APEC period was alkaline but was acidic during the APEC period. Relatively lower mean concentrations of EC (1.5 μg m−3), OC (10.5 μg m−3), secondary organic carbon (SOC, 3.3 μg m−3), secondary organic aerosol (SOA, 5.9 μg m−3) and primary organic aerosol (POA, 10.0 μg m−3) appeared during the APEC period. The average concentrations of NH3 and NO2 at all road sites were significantly reduced by 48 and 60% during the APEC period, which is consistent with clear reductions in satellite NH3 columns over Beijing city in the same period. This finding suggests that reducing traffic emissions could be a feasible method to control urban NH3 pollution. During the APEC period, concentrations of PM2.5, PM10, NO2, SO2 and CO from the Beijing city monitoring network showed significant reductions at urban (20–60%) and rural (18–57%) sites, whereas O3 concentrations increased significantly (by 93% and 53%, respectively). The control measures taken in the APEC period substantially decreased PM2.5 pollution but can increase ground O3, which also merits attention

    The large area detector onboard the eXTP mission

    Get PDF
    The Large Area Detector (LAD) is the high-throughput, spectral-timing instrument onboard the eXTP mission, a flagship mission of the Chinese Academy of Sciences and the China National Space Administration, with a large European participation coordinated by Italy and Spain. The eXTP mission is currently performing its phase B study, with a target launch at the end-2027. The eXTP scientific payload includes four instruments (SFA, PFA, LAD and WFM) offering unprecedented simultaneous wide-band X-ray timing and polarimetry sensitivity. The LAD instrument is based on the design originally proposed for the LOFT mission. It envisages a deployed 3.2 m2 effective area in the 2-30 keV energy range, achieved through the technology of the large-area Silicon Drift Detectors - offering a spectral resolution of up to 200 eV FWHM at 6 keV - and of capillary plate collimators - limiting the field of view to about 1 degree. In this paper we will provide an overview of the LAD instrument design, its current status of development and anticipated performance

    Fully Convolutional Neural Networks with Full-Scale-Features for Semantic Segmentation

    No full text
    In this work, we propose a novel method to involve full-scale-features into the fully convolutional neural networks (FCNs) for Semantic Segmentation. Current works on FCN has brought great advances in the task of semantic segmentation, but the receptive field, which represents region areas of input volume connected to any output neuron, limits the available information of output neuron's prediction accuracy. We investigate how to involve the full-scale or full-image features into FCNs to enrich the receptive field. Specially, the full-scale feature network (FFN) extends the full-connected network and makes an end-to-end unified training structure. It has two appealing properties. First, the introduction of full-scale-features is beneficial for prediction. We build a unified extracting network and explore several fusion functions for concatenating features. Amounts of experiments have been carried out to prove that full-scale-features makes fair accuracy raising. Second, FFN is applicable to many variants of FCN which could be regarded as a general strategy to improve the segmentation accuracy. Our proposed method is evaluated on PASCAL VOC 2012, and achieves a state-of-art result

    Summer solstice marks a seasonal shift in temperature sensitivity of stem growth and nitrogen-use efficiency in cold-limited forests

    No full text
    In boreal forests and alpine treelines, it is debatable how the temperature sensitivity of tree-ring growth should vary with changes in climate over time and the extent to which seasonal stem increments are controlled by leaf physiology. We aim to test the hypothesis that, in cold-limited forests, maximizing stem growth rate around summer solstice is closely related to foliage turnover, which generally results in high sensitivity of stem growth and less sensitivity of nitrogen-use efficiency (NUE) to early-season temperatures. Our analysis was based on repeat-census observations of stem radial increment (2008–2013; made with dendrometers) and monthly litterfall (2007–2015) as well as the measurements of tree-ring width series (1960–2015; made with tree-ring cores) in two Tibetan treeline forests. NUE was estimated as the inverse of leaf-litter nitrogen concentration. We further examined a global dataset of tree-ring chronologies (1931–1990) from 139 sites across temperate and boreal coniferous forests in the northern high-latitude region. Weekly stem increments across species and years synchronously peaked around summer solstice, with more than half of annual increment produced in the first 28–35 days of the growing season when air and soil temperatures were still low. Monthly stem increments were positively related to previous-month litterfall, and higher litterfall generally resulted in higher NUE. NUE was insensitive or less sensitive to soil temperature in the early growing season. Among years, pre-peak increments were positively correlated with pre-solstice temperatures while post-peak increments varied little. The annual increment was dominated by and coherent with the pre-peak increment and well correlated with the ring-width measurements of monitored trees during 2008–2013. Variations in tree-ring width chronologies from the two Tibetan treelines and the global 139 forest sites mainly reflected the change of early summer temperatures. The findings suggest a day-length control on the linkage between seasonal stem growth and nitrogen cycling in a cold-limited forest ecosystem, and provide the basic for predicting responses of tree-ring growth and NUE to climatic warming

    Amorphous nitrogen-doped carbon nanocages with excellent SERS sensitivity and stability for accurate identification of tumor cells

    No full text
    The surface-enhanced Raman scattering (SERS) bioprobe's strategy for identifying tumor cells always depended on the intensity difference of the Raman signal compared with that of normal cells. Hence, exploring novel SERS nanostructure with excellent spectra stability, a high enhancement factor (EF), and good biocompatibility is a primary premise for boosting SERS signal reliability and accuracy of tumor cells. Here, high SERS EF (5.52 × 106) is acquired by developing novel amorphous nitrogen-doped carbon (NDC) nanocages (NCs), whose EF value was in a leading position among carbon-based SERS substrates. In addition, a uniform SERS signal was obtained on NDC NCs due to homogeneous morphology and size. The delocalized carbon-conjugated systems of graphitic-N, pyrrole-N, and pyridine-N with lone pair electrons increase the electronic density of states and reduce the electron localization function of NDC NCs, thereby promoting the charge transfer process. The electron-donor platform of the NDC NCs facilitates the thermodynamic process of charge transfer, resulting in multimode vibrational coupling in the surface complexes, which greatly amplifies the molecular polarizability. Importantly, the good biocompatibility and signal stability endow these NDC NC SERS bioprobes unique superiority in distinguishing tumor cells, and quantitative recognition of two triple-negative breast cancer cells based on SERS detection mode has been successfully realized.This work was supported by the funding from National Natural Science Foundation of China (52002380, 32025021, 31971292, 52022006, 12274018, 21875008 and 32111540257), Ningbo 3315 Innovative Teams Program (2019A-14-C), the Science and Technology Bureau of Ningbo City (2020Z094), Zhejiang Province Key Research Project (2019C03058, 2020C03110), Youth Innovation Promotion Association Foundation of CAS, and Zhejiang Provincial Natural Science Foundation of China (LQ20E020003)

    Black TiO2 based core-shell nanocomposites as doxorubicin carriers for thermal imaging guided synergistic therapy of breast cancer

    No full text
    TiO2 nanomaterials have been widely used for anticancer drug carriers and UV/980 nm NIR triggered cancer synergistic platforms. However, traditional pure TiO2 nanocarriers encounter some serious drawbacks, such as low drug loading ability, limited tissue penetration of UV light, and heating effect of 980 nm NIR on normal tissue, which obstruct their further application in cancer treatment. To overcome those challenges, novel mesoporous silica (mSiO(2)) coated black TiO2 core-shell nanocomposites are designed and constructed as doxorubicin carriers for 808 nm NIR triggered thermal imaging guided photothermal therapy combined chemotherapy of breast cancer. Properties of the nanocomposites such as micro-morphology, size, drug loading ability and release, targeting performance, and therapy efficiency in vitro and in vivo were evaluated. The results indicated the core-shell nanocomposites with dramatically increased loading ability were pH-responsive/NIR-accelerated doxorubicin release nanocarriers and showed synergistic breast cancer treatment in vitro and in vivo. This study verifies that the newly prepared mSiO(2) coated black TiO2 core-shell nanocarriers can overcome the limitations of traditional TiO2 nanocarriers and thus improve and broaden usage of TiO2 nanoparticles in nanomedicine
    corecore