266 research outputs found

    On the generalization of linear least mean squares estimation to quantum systems with non-commutative outputs

    Get PDF
    The purpose of this paper is to study the problem of generalizing the Belavkin-Kalman filter to the case where the classical measurement signal is replaced by a fully quantum non-commutative output signal. We formulate a least mean squares estimation problem that involves a non-commutative system as the filter processing the non-commutative output signal. We solve this estimation problem within the framework of non-commutative probability. Also, we find the necessary and sufficient conditions which make these non-commutative estimators physically realizable. These conditions are restrictive in practice.Comment: 31 page

    Interpolation Approach to Hamiltonian-varying Quantum Systems and the Adiabatic Theorem

    Full text link
    Quantum control could be implemented by varying the system Hamiltonian. According to adiabatic theorem, a slowly changing Hamiltonian can approximately keep the system at the ground state during the evolution if the initial state is a ground state. In this paper we consider this process as an interpolation between the initial and final Hamiltonians. We use the mean value of a single operator to measure the distance between the final state and the ideal ground state. This measure could be taken as the error of adiabatic approximation. We prove under certain conditions, this error can be precisely estimated for an arbitrarily given interpolating function. This error estimation could be used as guideline to induce adiabatic evolution. According to our calculation, the adiabatic approximation error is not proportional to the average speed of the variation of the system Hamiltonian and the inverse of the energy gaps in many cases. In particular, we apply this analysis to an example on which the applicability of the adiabatic theorem is questionable.Comment: 12 pages, to appear in EPJ Quantum Technolog

    Functionalization and Length Fractionation of Single-Wall Carbon Nanotubes

    Get PDF
    Single-wall carbon nanotubes (SWCNTs) are a promising material for future biological applications such as imaging and targeted drug delivery. SWCNTs can be made soluble in water through surface functionalization, a priority for their use in biology. By studying the surface chemistry of SWCNTs, various functionalization methods can be accomplished without perturbing their electronic structure. This study probes the use of pyrene derivatives and phospholipids to non-covalently functionalize SWCNTs, maintaining useful surface properties. Phospholipids cross-linked to polyethylene glycol (PEG) or 1-pyrenebutyric acid conjugated to DNA is anchored onto the sidewalls of SWCNTs by hydrophobic interactions or π-stacking. The PEG/DNA portion is water soluble and biocompatible, thus solubilizing the SWCNTs. Biofunctional materials such as DNA or proteins can be attached to the functionalized nanotubes and used for biological applications. Functionalization is characterized by optical methods and atomic force microscopy (AFM). Length sorting of SWCNTs fit for use in bio-functionalization is also explored. By functionalizing SWCNTs with groups that are cytologically compatible, allowing for their dispersion in water, they show greater promise in future biological applications

    The Most Recently Discovered Carbonic Anhydrase, CA XV, Is Expressed in the Thick Ascending Limb of Henle and in the Collecting Ducts of Mouse Kidney

    Get PDF
    BACKGROUND: Carbonic anhydrases (CAs) are key enzymes for physiological pH regulation, including the process of urine acidification. Previous studies have identified seven cytosolic or membrane-bound CA isozymes in the kidney. Recently, we showed by in situ hybridization that the mRNA for the most novel CA isozyme, CA XV, is present in the renal cortex. CA XV is a unique isozyme among mammalian CAs, because it has become a pseudogene in primates even though expressed in several other species. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we raised a polyclonal antibody against recombinant mouse CA XV that was produced in a baculovirus/insect cell expression system, and the antibody was used for immunohistochemical analysis in different mouse tissues. Positive immunoreactions were found only in the kidney, where the enzyme showed a very limited distribution pattern. Parallel immunostaining experiments with several other anti-CA sera indicated that CA XV is mainly expressed in the thick ascending limb of Henle and collecting ducts, and the reactions were most prominent in the cortex and outer medulla. CONCLUSION/SIGNIFICANCE: Although other studies have proposed a role for CA XV in cell proliferation, its tightly limited distribution may point to a specialized function in the regulation of acid-base homeostasis

    QuNex—An integrative platform for reproducible neuroimaging analytics

    Get PDF
    Introduction: Neuroimaging technology has experienced explosive growth and transformed the study of neural mechanisms across health and disease. However, given the diversity of sophisticated tools for handling neuroimaging data, the field faces challenges in method integration, particularly across multiple modalities and species. Specifically, researchers often have to rely on siloed approaches which limit reproducibility, with idiosyncratic data organization and limited software interoperability. Methods: To address these challenges, we have developed Quantitative Neuroimaging Environment & Toolbox (QuNex), a platform for consistent end-to-end processing and analytics. QuNex provides several novel functionalities for neuroimaging analyses, including a “turnkey” command for the reproducible deployment of custom workflows, from onboarding raw data to generating analytic features. Results: The platform enables interoperable integration of multi-modal, community-developed neuroimaging software through an extension framework with a software development kit (SDK) for seamless integration of community tools. Critically, it supports high-throughput, parallel processing in high-performance compute environments, either locally or in the cloud. Notably, QuNex has successfully processed over 10,000 scans across neuroimaging consortia, including multiple clinical datasets. Moreover, QuNex enables integration of human and non-human workflows via a cohesive translational platform. Discussion: Collectively, this effort stands to significantly impact neuroimaging method integration across acquisition approaches, pipelines, datasets, computational environments, and species. Building on this platform will enable more rapid, scalable, and reproducible impact of neuroimaging technology across health and disease

    Light the Signal: Optimization of Signal Leakage Attacks against LWE-Based Key Exchange

    Get PDF
    Key exchange protocols from the learning with errors (LWE) problem share many similarities with the Diffie–Hellman–Merkle (DHM) protocol, which plays a central role in securing our Internet. Therefore, there has been a long time effort in designing authenticated key exchange directly from LWE to mirror the advantages of DHM-based protocols. In this paper, we revisit signal leakage attacks and show that the severity of these attacks against LWE-based (authenticated) key exchange is still underestimated. In particular, by converting the problem of launching a signal leakage attack into a coding problem, we can significantly reduce the needed number of queries to reveal the secret key. Specifically, for DXL-KE we reduce the queries from 1,266 to only 29, while for DBS-KE, we need only 748 queries, a great improvement over the previous 1,074,434 queries. Moreover, our new view of signals as binary codes enables recognizing vulnerable schemes more easily. As such we completely recover the secret key of a password-based authenticated key exchange scheme by Dabra et al. with only 757 queries and partially reveal the secret used in a two-factor authentication by Wang et al. with only one query. The experimental evaluation supports our theoretical analysis and demonstrates the efficiency and effectiveness of our attacks. Our results caution against underestimating the power of signal leakage attacks as they are applicable even in settings with a very restricted number of interactions between adversary and victim

    Transcriptomic and proteomic responses of sweetpotato whitefly, Bemisia tabaci, to thiamethoxam

    Get PDF
    BACKGROUND: The sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), is one of the most widely distributed agricultural pests. Although it has developed resistance to many registered insecticides including the neonicotinoid insecticide thiamethoxam, the mechanisms that regulate the resistance are poorly understood. To understand the molecular basis of thiamethoxam resistance, omics analyses were carried out to examine differences between resistant and susceptible B. tabaci at both transcriptional and translational levels. RESULTS: A total of 1,338 mRNAs and 52 proteins were differentially expressed between resistant and susceptible B. tabaci. Among them, 11 transcripts had concurrent transcription and translation profiles. KEGG analysis mapped 318 and 35 differentially expressed genes and proteins, respectively, to 160 and 59 pathways (p CONCLUSIONS: This study demonstrates the applicability of high-throughput omics tools for identifying molecular candidates related to thiamethoxam resistance in an agricultural important insect pest. In addition, transcriptomic and proteomic analyses provide a solid foundation for future functional investigations into the complex molecular mechanisms governing the neonicotinoid resistance in whiteflies

    Final report on project SP1210: Lowland peatland systems in England and Wales – evaluating greenhouse gas fluxes and carbon balances

    Get PDF
    Lowland peatlands represent one of the most carbon-rich ecosystems in the UK. As a result of widespread habitat modification and drainage to support agriculture and peat extraction, they have been converted from natural carbon sinks into major carbon sources, and are now amongst the largest sources of greenhouse gas (GHG) emissions from the UK land-use sector. Despite this, they have previously received relatively little policy attention, and measures to reduce GHG emissions either through re-wetting and restoration or improved management of agricultural land remain at a relatively early stage. In part, this has stemmed from a lack of reliable measurements on the carbon and GHG balance of UK lowland peatlands. This project aimed to address this evidence gap via an unprecedented programme of consistent, multi year field measurements at a total of 15 lowland peatland sites in England and Wales, ranging from conservation managed ‘near-natural’ ecosystems to intensively managed agricultural and extraction sites. The use of standardised measurement and data analysis protocols allowed the magnitude of GHG emissions and removals by peatlands to be quantified across this heterogeneous data set, and for controlling factors to be identified. The network of seven flux towers established during the project is believed to be unique on peatlands globally, and has provided new insights into the processes the control GHG fluxes in lowland peatlands. The work undertaken is intended to support the future development and implementation of agricultural management and restoration measures aimed at reducing the contribution of these important ecosystems to UK GHG emissions
    corecore