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Abstract
The purpose of this paper is to study the problem of generalizing the
Belavkin-Kalman filter to the case where the classical measurement signal is replaced
by a fully quantum non-commutative output signal. We formulate a least mean
squares estimation problem that involves a non-commutative system as the filter
processing the non-commutative output signal. We solve this estimation problem
within the framework of non-commutative probability. Also, we find the necessary
and sufficient conditions which make these non-commutative estimators physically
realizable. These conditions are restrictive in practice.
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1 Introduction
Quantum filtering theory as a fundamental theory in quantum optics, which was implicit
in the work of Davies in the s [, ] concerning open quantum systems and generalized
measurement theory, and culminating in the general theory developed and initiated by
Belavkin during the s [–]. The quantum filter is a stochastic differential equation
for the conditional state, from which the best estimates of the system observables may be
obtained. In related work by Carmichael, the quantum filter is referred to as the stochastic
master equation [, ].

One application of the quantum filter, or variants of it, is in measurement feedback con-
trol [–]. As in classical control theory, optimal measurement feedback control strate-
gies may be expressed as functions of information states, of which the conditional state is
a particular case [, ]. However, feedback control of quantum systems need not involve
measurements, and indeed the topic of coherent quantum feedback is evolving [–],
though a general theory of optimal design of coherent quantum feedback systems is at
present unavailable. In coherent quantum feedback control, the controller is also a quan-
tum system, and information flowing in the feedback loop is also quantum (e.g. via a quan-
tum field). This type of feedback has recently led to new proposals for quantum memories,
quantum error correction, and ultra-low power classical photonic signal processing [–
].
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The purpose of this paper is to contribute to the knowledge of coherent quantum estima-
tion and control by developing further a non-commutative formulation of the quantum
filter given by Belavkin in s []. While the main results obtained by Belavkin apply
only to the commutative measurement case, the problem formulation he used was more
general. Belavkin’s theory of quantum filtering concerns the estimation of the variables of
quantum systems conditioned on classical (commutative) measurement records. For lin-
ear quantum stochastic systems, Belavkin’s filter has the same form as the classical Kalman
filter. The Belavkin-Kalman filter is a classical system that processes the incoming mea-
surements to produce the desired estimates. The estimates may be used for monitoring
and/or feedback control of the quantum system.

In our study, we formulate and solve a problem of optimal estimation of a linear quan-
tum system variables given the non-commutative outputs within the framework of non-
commutative probability theory. In particular, we derive a system of non-commutative
stochastic differential equations (the non-commutative Belavkin-Kalman filter) that min-
imizes a least squares error criterion. Such non-commutative filtering equations are well
defined mathematically, even if they do not correspond to a physical system. However,
if we wish to implement the non-commutative Belavkin-Kalman filter within the class of
physically realizable linear quantum stochastic systems (such as linear quantum optical
systems), then we find that the conditions for physical realizability impose strong restric-
tions. In this paper, we find physical realizability conditions for general case and also for
some particular cases. These strong physical realizability conditions are a key contribution
of this paper.

We remark that our contribution here is different from the problem studied in [].
Since, in [], the authors propose another physically realizable quantum system consid-
ered as a filter, connected to the output of the plant whose dynamics can be determined
by minimizing the mean square discrepancy between the plant’s state and the output of
the filter. Also, they suppose an additional vacuum noise other than the plant’s noises in
the form of filter’s dynamics. However, in this paper, we focus firstly on finding the form of
linear least mean squares estimators for the non-commutative outputs by temporarily ex-
cluding the physical realizability constraints. To do this, we proceed as classical Kalman fil-
tering and Belavkin-Kalman filtering by supposing that the mean squares estimator should
satisfy a linear dynamics of innovation processes and we do not suppose any additional
vacuum noises other than dw which is the input process of the plant. As such, we obtain
the form of least mean squares estimators for non commutative outputs. Then, we seek
necessary and sufficient conditions which make such linear least mean squares estimators
automatically physically realizable. As we can observe in examples, for some particular
forms of plants, we are obliged to add additional vacuum noises to the least mean squares
estimators to ensure physical realizability. These estimators which track asymptotically
the plant’s state and are physically realizable are called coherent observers []. Roughly
speaking, coherent least mean squares estimators and observers are another physical sys-
tems connected to the main system in cascade [, , ]. We remark that coherent linear
least squares estimators and observers could in principle be used for coherent feedback
control, although this matter is outside the scope of the present paper.

This paper is organized as follows. In Section , we present general quantum linear
stochastic dynamics. In Section , we obtain non-commutative linear least mean squares
estimators for the general linear quantum stochastic dynamics, expressed in Theorem . In
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Section , we study the physical realizability of such linear least mean squares estimators.
The main results of this section are expressed in Theorem  and Corollaries -. Moreover,
some illustrative examples are provided. Finally, the conclusion is given in Section .

2 Quantum linear stochastic dynamics
Consider linear quantum possibly non-commutative stochastic systems of the form []

dx(t) = Ax(t) dt + B dw(t),

dy(t) = Cx(t) dt + D dw(t).
()

Here, A, B, C and D are real matrices in R
n×n, Rn×nw , Rny×n, and R

ny×nw , where n, nw, ny

are positive integers with nw ≥ ny. Also, x(t) = [x(t), . . . , xn(t)]T is a vector of self-adjoint
possibly non-commutative system variables defined on a Hilbert space H. The initial state
x() is Gaussian with state ρ and satisfies the commutation relationsa

[
xj(), xk()

]
= i�jk , j, k = , , . . . , n,

where � is a real antisymmetric matrix with components �jk and i =
√

–. We assume
that the matrix � can take one of the two following forms:

• Canonical if � = diag n


(J), with n even or
• Degenerate canonical if � = diag(n′×n′ , diag n–n′


(J)), with  < n′ ≤ n and n – n′ even.b

Here J corresponds to the real skew-symmetric  ×  matrix

J =

[
 

– 

]

,

and the ‘diag’ notation corresponds to a block diagonal matrix. Also, diagm(J) denotes a
m × m block diagonal matrix with m matrices J on the diagonal.

The noise dw(t) is a vector of self-adjoint quantum noises with Itō table

dw(t) dw(t)T = Fw dt, ()

where Fw is a non-negative Hermitian matrixc (see e.g., [, ]). Indeed, the special case
Fw = Inw×nw describes a classical noise vector dw. However, the more general case

Fw = Inw×nw + i diag
(
n′×n′ , diag nw–n′


(J)

)

presents n′ classical noises and nw – n′ conjugate quantum noises.d Here, the self-adjoint
entries of the vector w(t) which act on the Boson Fock space F are the quantum noises
driving the system and they correspond to boson quadratures (see e.g., [, , ]). This
determines the following commutation relations for the noise components

[
dw(t), dwT (t)

]
= Tw dt, ()

with Tw = 
 (Fw – FT

w ).e
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Similarly, the process y has the following Itō table

dy(t) dy(t)T = Fy dt,

where Fy is a non-negative Hermitian matrix. Indeed, the special case Fy = Iny×ny describes
a classical output vector dy. However, the more general case

Fy = Iny×ny + i diag
(
n′×n′ , diag ny–n′


(J)

)

presents n′ classical outputs and ny – n′ conjugate quantum outputs. The commutation
relations for the processes dy is determined by the matrix Ty given by the following

[
dy(t), dyT (t)

]
= Ty dt,

with Ty = 
 (Fy – FT

y ). Note that we have the following relations

Fy = DFwDT , and Ty = DTwDT .

As discussed in [], we can always set up the following conventions by appropriately en-
larging dw, dy, B and C: (i) ny is even (ii) Fw has the following form

Fw = Inw×nw + i diag nw


(J), ()

hence nw should be even.

2.1 Physical realizability of linear QSDEs
Not all QSDEs of the form () represent the dynamics of physically meaningful open quan-
tum systems. In the case that � is canonical, the system is physically realizable if it presents
an open quantum harmonic oscillator. Now we give the formal definition of physical real-
izability (see e.g., [], Definition .).

Definition  The system () is said to be physically realizable if one of the following holds:
• � is canonical and Equation () represents the dynamics of an open quantum

harmonic oscillator.
• � is degenerate canonical and there exists an augmentation of Equation () (see more

details in []) such that the new QSDEs represent the dynamics of an open quantum
harmonic oscillator.

The system () describes an open quantum harmonic oscillator if there exists a quadratic
Hamiltonian H = 

 x()T Rx(), with a real, symmetric, n × n matrix R, and a coupling
operator L = �x(), with a complex-valued 

 nw × n coupling matrix � such that

xk(t) = U(t)†
(
xk() ⊗ 

)
U(t), k = , . . . , n,

yl(t) = U(t)†
(
 ⊗ wl(t)

)
U(t), l = , . . . , ny,

()

where {U(t), t ≥ } is an adapted process of unitary operators satisfying the following
QSDE []

dU(t) =
(

–iH dt –



L†L dt +
[
–L†LT]

� dw(t)
)

U(t), U() = I.
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In this case, the matrices A, B, C and D are given by

A = �
(
R + Im

(
�†�

))
,

B = i�
[
–�† �T]

�,

C = PT

[
� 
 �

][
� + �#

–i� + i�#

]

,

D = [Iny×ny ny×(nw–ny)].

Here, � is a nw × nw matrix and

� = P diag(M),

M =



[
 i
 –i

]

,

� =
[

I 
 ny× 

 ny
 

 ny× 
 (nw–ny)

]
.

P is the appropriately dimensioned square permutation matrix such that

P[a a · · · am] = [a a · · · am– a a · · · am].

Also, note that Im(·) denotes the imaginary part of a matrix, X† denotes the adjoint of an
operator X, and X# denotes the complex conjugate of a matrix X.

The following theorem borrowed from [] provides necessary and sufficient conditions
for physical realizability of Equation () for any � (canonical or degenerate canonical).

Theorem  ([]) The system () is physically realizable if and only if

iA� + i�AT + BTwBT = ,

BDT = �CT diag ny


(J).
()

Here, D = [Iny×ny ny×(nw–ny)]. Moreover, for canonical �, the Hamiltonian and coupling
matrices have explicit expressions as follows. The Hamiltonian matrix R is uniquely given
by R = 

 (–�A + AT�), and the coupling matrix � is given uniquely by

� = –



i[ nw
 × nw


I nw

 × nw


]
(
�–)T BT�.

In the case that � is degenerate canonical, a physically realizable augmentation of the
system can be constructed to determine the associated Hamiltonian and coupling operators
using the above explicit formulas.

In the following lemma, we prove that the non-demolition property holds for non-
commutative outputs if system () is physically realizable.
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Lemma  If the system () is physically realizable, then the non-demolition property holds,
i.e.,

[
x(t), y(s)T]

= , for any t ≥ s.

Proof In [], Lemma , it was shown that the condition [x(t), y(s)T ] = , for any t ≥ s is
equivalent to the following

�CT + BTwDT = . ()

Now we show that if the plant is supposed physically realizable, i.e., if condition () holds,
then, the above equality holds too. Since, by condition (), we have

BDT = �CT diag ny


(J),

which is equivalent to �CT = –BDT diag ny


(J), as (diag ny


(J)) = –Iny×ny . Now it is easy to
verify that condition () is satisfied, because we have

DT diag ny


(J) = TwDT ,

therefore

BDT diag ny


(J) = BTwDT ,

which is exactly condition (). �

In the following lemma, we show that the non-commutative outputs do not have self-
non-demolition property.

Lemma  The non-commutative output processes y have the following commutation rela-
tions

[
y(t), y(s)T]

= DTwDT s, for all t ≥ s.

Proof First note that we have the following property

[
y(t), y(s)T]

=
[

y(s) +
∫ t

s
dy

(
s′), y(s)T

]
=

[
y(s), y(s)T]

,

since

[∫ t

s
dy

(
s′), y(s)T

]
=

[∫ t

s
Cx

(
s′) + D dw

(
s′), y(s)T

]
= ,

as [x(s′), y(s)T ] =  for any s′ ≥ s, by previous lemma and [dw(s′), y(s)T ] = , for any s′ ≥ s.
Now it is sufficient to prove the lemma for [y(s), y(s)T ]. By taking the differentiation of this
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commutator, by Itō rule, we find

d
[
y(s), y(s)T]

=
[
dy(s), y(s)T]

+
[
y(s), dy(s)T]

+
[
dy(s), dy(s)T]

=
[
Cx(s) ds + D dw(s), y(s)T]

+
[
y(s), x(s)T CT ds + dw(s)T DT]

+
[
Cx(s) ds + D dw(s), x(s)T CT ds + dw(s)T DT]

= D
[
dw(s), dw(s)T]

DT = DTwDT ds,

where we have used the following facts: [x(s), y(s)T ] = , [y(s), x(s)T ] = , [dw(s), y(s)T ] = ,
[y(s), dw(s)T ] = , (ds) = , dw(s) ds = , and ds dw(s)T = . Also, for the last equality, we
have used the commutation relations for the processes dw given in ().

Finally, we get the following

[
y(s), y(s)T]

= DTwDT s,

since [y(), y()T ] = ny×ny . �

Remark  We recall that when y is commutative, we have

Ty = DTwDT = ny×ny ,

which implies that the process y is self-commuting.

Before starting the next section, let us present the following definition.

Definition  For any vector of zero mean self-adjoint operators ζ , the symmetric covari-
ance is defined by

Cζ =


E

[
ζ ζ T +

(
ζ ζ T)T]

. ()

The matrix Cζ is non-negative, real and symmetric. If ζ does not have zero mean, the
covariance is defined by subtracting the mean.

3 Linear least mean squares estimation
In this section, we formulate a linear least squares estimation problem for the non-
commutative linear system (), with non-commutative output process y(t). The problem
concerns finding an operator x̂(t), called an estimator, such that the dynamical evolution
of x̂(t) depends causally on the output process y(t) and the length of the error

e(t) = x(t) – x̂(t) ()

is minimized. The idea is that x̂(t) ‘tracks’ the plant operator x(t). The vector x̂(t) has
self-adjoint operator components defined on a generally larger space than the system ().
More precisely, the vector x̂ consists of entries which are self-adjoint operators acting on
the tensor product Hilbert space H ⊗ F ⊗ H, where H is the initial Hilbert space of
the least squares estimator x̂, which is a copy of the system space and independent of the
system ().
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Take Y(t) for the von Neumann algebra generated by the output process y(s) for
 ≤ s ≤ t. When Y(t) is commutative, i.e., y(t) is a classical measurement process (by the
spectral theorem [], Theorem .), the optimal filter in the least squares sense is ob-
tained by computing the conditional expectation onto Y(t) [, ]. The non-demolition
property ([x(t), y(s)T ] = , for any t ≥ s) is sufficient to conclude the existence of the com-
mutative conditional expectation [].

In contrast to commutative output, it is not shown whether the least mean squares esti-
mator that we define in Definition , is equivalent to conditional expectation. This prob-
lem is related to the existence of a non-commutative conditional expectation which is not
always guaranteed, and we do not consider this matter in this paper (see more details in
[]).

Firstly, we define the class ξ of linear estimators of the form,

dx̌(t) = Ax̌(t) dt + K(t)
(
dy(t) – Cx̌(t) dt

)
, x̌() = x̂, ()

where y is the adapted process defined in Equation () (see [, , ] for a discussion
of adapted quantum processes). Equation () has the standard form of an observer or
Kalman filter. The real gain matrix K(t) is to be determined.

The initial condition x̂() satisfies the commutation relations

x̂()x̂()T –
(
x̂()x̂()T)T = i�.

The state of x̂() is taken to be ρ̂. Consequently, the initial state of the composite system
() and () is the Gaussian state ρ = ρ ⊗ ρ̂.

Definition  A linear least mean squares estimator x̂ for the non-commutative linear
system () has the following properties,

• it is defined on the class ξ , i.e., it is a linear system of the form (), and
• the real matrix K(t) is chosen to minimize the symmetrized mean squares error

defined as follows

J
(
K(t)

)
:= Tr

[
P(t)

]
, ()

where P(t) is the symmetric error covariance matrix defined by

P(t) := Ce(t) =


Eρ

[
e(t)e(t)T +

(
e(t)e(t)T)T]

.

Prior to state our main theorem, we need the following equations

Ṗ(t) =
(
A – K(t)C

)
P(t) + P(t)

(
A – K(t)C

)T +
(
B – K(t)D

)(
B – K(t)D

)T ,

P() = Ce().
()

Here, Ce() is the initial symmetric error covariance.

Theorem  Suppose that the plant () is physically realizable. Then, the linear system ()
is a linear least mean squares estimator for the system () if and only if the gain K(t) is given
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by

K(t) = BDT + P(t)CT , ()

where P(t) is the symmetric positive definite solution to the Riccati equation (). Further-
more, the innovations process

dr(t) := dy(t) – Cx̂(t) dt = Ce(t) dt + D dw(t), r() = , ()

is a quantum Wiener process with symmetrized covariance t and Itō table

dr(t) drT (t) = DFwDT dt. ()

Proof The proof is a modification of the well known methods documented in []. It fol-
lows from [], Lemma ., that J(K) is minimized, if and only if

K(t) =
(
BDT + P(t)CT)(

DDT)–,

where P(t) is the solution to (). Below, we show that the symmetrized error covariance
matrix satisfies the Riccati equation ().

The error as defined in Equation () satisfies the following dynamics

de(t) =
(
A – K(t)C

)
e(t) dt +

(
B – K(t)D

)
dw(t). ()

Fix any real matrix K(t) and let x̂(t) be the solution of Equation (). Let e(t) = x(t) – x̂(t)
be the associated error, and consider the real symmetric error covariance

P(t) = Ce(t) =


Eρ

[
e(t)e(t)T +

(
e(t)e(t)T)T]

. ()

Take the derivation of the above equation, by the quantum Itō rule, we have

dP(t) =


(
Eρ

[
de(t)e(t)T + e(t) de(t)T + de(t) de(t)T

+
(
de(t)e(t)T + e(t) de(t)T + de(t) de(t)T)T])

.

Now, it is sufficient to replace the expression of de given in Equation () in above, we get

dP(t) =


(
(A – KC)Eρ

[
e(t)e(t)T]

dt + Eρ

[
e(t)e(t)T]

(A – KC)T dt

+ (B – KD)Fw(B – KD)T dt + Eρ

[(
e(t)e(t)T)T]

(A – KC)T dt

+ (A – KC)Eρ

[(
e(t)e(t)T)T]

dt + (B – KD)FT
w (B – KD)T dt

)
, ()

where we have used the followings: Eρ[dw(t)e(t)T ] = , Eρ[e(t) dw(t)T ] = , Eρ[(dt)] = ,
Eρ[dt dwT ] = , Eρ[dw dt] = , and Equation ().
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From Equation (), we can write the following

Ṗ(t) =
(
A – K(t)C

)
P(t) + P(t)

(
A – K(t)C

)T +
(
B – K(t)D

)(
B – K(t)D

)T ,

P() = Ce(),
()

since by Equation (), we know Fw+FT
w

 = Inw×nw .
Now the mean squares error can be expressed in terms of P(t) as follows

J
(
K(t)

)
= Tr

[
P(t)

]
. ()

As Equation () has the same form as the standard Riccati equation considered in [],
we can apply [], Lemma ., to find the minimum of J(K), we get

K(t) =
(
BDT + P(t)CT)(

DDT)–. ()

The gain given in above can be further simplified as

K(t) = BDT + P(t)CT ,

since DDT = Iny×ny by physical realizability of the plant. This finishes the proof of the first
part of Theorem .

Next, following [], Section .., let

�(t) =

[
�(t) �(t)
�T

(t) �(t)

]

()

be the (symmetrized) covariance matrix for the vector
[ r(t)

e(t)
]
. By the Itō rule and taking

expectations, we find that

�̇(t) = C�T
(t) + �(t)CT + I, �() = ny×ny ,

�̇(t) = C�(t) + �(t)
(
A – K(t)C

)T + D
(
B – K(t)D

)T , �() = ny×n,

�̇(t) =
(
A – K(t)C

)
�(t) + �(t)

(
A – K(t)C

)T

+
(
B – K(t)D

)(
B – K(t)D

)T , �() = Ce().

Comparing with Equation (), we find that �(t) = P(t), and from (), we have

�̇(t) = �(t)(A – KC)T , �() = ny×n, ()

which implies �(t) = ny×n for all t ≥ . From this, we see that

�̇(t) = Iny×ny , �() = ny×ny , ()

and hence �(t) = tIny×ny . Also, it is obvious that we have the following relations for the
innovation processes dr,

dr(t) drT (t) = DFwDT dt,

since (dt) = , dw(t) dt = , and dt dw(t)T = . �
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4 Results on physical realizability
In this section, we will study the physical realizability of the least mean squares estimators
announced in Theorem . In Theorem , we do not assume the linear least mean squares
estimator () to be physically realizable.

Let us write B as

B =
[
B′

n×ny B′′
n×nw–ny

]
. ()

In the following, we will announce a general theorem which gives necessary and sufficient
conditions ensuring physical realizability of the least mean squares estimators given in
Theorem .

Theorem  Assume that the plant () satisfies the physical realizability conditions an-
nounced in Theorem . Then, the linear least mean squares estimator announced in Theo-
rem  is a physical realizable estimator if and only if

–B diag nw


(J)BT + B′ diag ny


(J)B′T + PCT diag ny


(J)B′T

+ B′ diag ny


(J)CP + PCT diag ny


(J)CP = , ()

with P satisfying the following Riccati equation

Ṗ(t) =
(
A – B′C

)
P(t) + P(t)

(
A – B′C

)T – P(t)
(
CT C

)
P(t) + B′′B′′T ,

P() = Ce().
()

Proof The estimator of the form () can be rewritten as the following form

dx̂(t) = (A – KC)x̂(t) dt + K(t) dy(t), x̂() = x̂.

If we impose the physical realizability constraints on the estimator of the form given in
above, we get the following condition

i(A – KC)� + i�(A – KC)T + KDTwDT KT = .

Now it is sufficient to replace K by its value determined by Theorem  (Equation ()). We
find

A� + �AT – BDT C� – �CT DBT – PCT C� – �CT CP

+ BDT diag ny


(J)DBT + PCT diag ny


(J)CP

+ BDT diag ny


(J)CP + PCT diag ny


(J)DBT = , ()

where we have used D diag nw


(J)DT = diag ny


(J). Now use the following facts C� =
– diag ny


(J)DBT and A� + �AT = –B diag nw


(J)BT , which are derived from the physical

realizability of the plant, i.e., Equation (). Also, note that BDT = B′. From these equali-
ties, Equation () can be derived from Equation ().

Moreover, Equation () is derived from the Riccati equation () by replacing K by its
value given in Equation () and using the physical realizability of the plant. �
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4.1 Some special cases
In the following, first, we study the physical realizability of the least mean squares esti-
mator announced in Theorem  for the case where B′ diag ny


(J)B′T = , with B′ defined in

Equation (). Second, we study the case where B′ = .

.. Case : B′ diag ny


(J)B′T = 
As it is demonstrated in the following corollary, the physical realizability constraint an-
nounced in () can be simplified.

Corollary  If B′ diag ny


(J)B′T = . Then, the estimator of the form () is a physical real-
izable least mean squares estimator if and only if the following constraints are satisfied.

(i) K = B′ + PCT .
(ii) For � canonical,

B′′ diag nw–ny


(J)B′′T + P�B′B′T + B′B′T�P = , ()

with P the unique symmetric positive definite solution of the following Riccati
equation,

Ṗ(t) = AP(t) + P(t)AT + P�B′B′T�P(t) + B′′B′′T ,

P() = Ce().
()

(iii) For � degenerate canonical,
(i) if diag(n′×n′ , diag n–n′


(I))CT = CT , then

B′′ diag nw–ny


(J)B′′T + P�B′B′T + B′B′T�P = ,

with P satisfying dynamics (),
(ii) but if diag(n′×n′ , diag n–n′


(I))CT �= CT holds, then,

–B′′ diag nw–ny


(J)B′′T + PCT diag ny


(J)B′T

+ B′ diag ny


(J)CP + PCT diag ny


(J)CP = , ()

with P satisfying Equation ().

Proof By Theorem , we know that the least mean squares estimator () is physically re-
alizable if and only if the condition () is satisfied. By the assumption B′ diag ny


(J)B′T = ,

we get

B diag nw


(J)BT = B′′ diag nw–ny


(J)B′′T .

Then, the condition () becomes

–B′′ diag nw–ny


(J)B′′T + PCT diag ny


(J)B′T

+ B′ diag ny


(J)CP + PCT diag ny


(J)CP = . ()



Amini et al. EPJ Quantum Technology  (2015) 2:14 Page 13 of 25

We know by the physical realizability of the plant C� = – diag ny


(J)DBT (and similarly,
�CT = –BDT diag ny


(J)). Now suppose that � is canonical, then by multiplying the above

conditions by �, we find C = diag ny


(J)DBT� (and similarly, CT = �BDT diag ny


(J)). Finally,
by replacing the values of C and CT found as such, we get the constraint () given in the
second part of the corollary.

Now we consider the case � degenerate canonical, in this case if we multiply the expres-
sion of C� (and similarly, �CT ) given in above by �, we get C diag(n′×n′ , diag n–n′


(I)) =

diag ny


(J)DBT� (and similarly, diag(n′×n′ , diag n–n′


(I))CT = �BDT diag ny


(J)). Now it is
clear that if the condition diag(n′×n′ , diag n–n′


(I))CT = CT holds, then we get exactly the

constraint given in the first part. However, if this condition does not hold, from (), we
get the constraint () which is exactly the condition (). �

Remark  We remark that the condition B′ diag ny


(J)B′T =  was considered in order to
simplify the physical realizability constraints in Equation (). As the corollary in above
shows, in most of the times, this case is equivalent to eliminating the quadratic terms in
Equation (). Also, note that if ny = n = , the condition B′ diag ny


(J)B′T =  is equivalent

to the condition det(B′) = , i.e., the quadratures are linearly dependent.

Particular case: ny = nw Consider the case ny = nw. Then, a physical realizable plant
should satisfy D = Iny×ny . As a result, the plant given in () takes the following form

dx(t) = Ax(t) dt + B dw(t),

dy(t) = Cx(t) dt + dw(t).
()

Now let us state the following corollary as analogue of Corollary .

Corollary  The estimator of the form () associated to the plant’s dynamics () is a
physical realizable least mean squares estimator if and only if the following constraints are
satisfied

(i) K = B + PCT .
(ii) For � canonical,

P�BBT + BBT�P = , ()

with P satisfying the following Riccati equation

Ṗ(t) = AP(t) + P(t)AT + P(t)�BBT�P(t),

P() = Ce().
()

(iii) For � degenerate canonical,
(i) if diag(n′×n′ , diag n–n′


(I))CT = CT , then

P�BBT + BBT�P = ,

with P satisfying dynamics (),
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(ii) but if diag(n′×n′ , diag n–n′


(I))CT �= CT holds, then,

PCT diag ny


(J)BT + B diag ny


(J)CP

+ PCT diag ny


(J)CP = , ()

with P satisfying the following dynamics

Ṗ(t) = (A – BC)P(t) + P(t)(A – BC)T – P(t)
(
CT C

)
P(t),

P() = Ce().
()

Proof The proof of this corollary can be done by the same arguments provided for Corol-
lary . Since, if ny = nw, the condition B′ diag ny


(J)B′T =  is equivalent to B diag nw


(J)BT = .

�

Particular case: n = , ny = , nw = , and � = J Consider the simple case n = , ny =
, nw = , and � = J . Take A =

( a a
a a

)
, P =

( p p
p p

)
, B′ =

( b b
b b

)
, and B′′ =

( d d
d d

)
. In the

following, we find the constraints which guarantee the physical realizability of the least
mean squares estimator announced in Theorem .

Corollary  Take � = J . If B′JB′T = , then, the least mean squares estimator given in
Theorem  is physically realizable if and only if

p
(
–b

 – b

)

+ p(bb + bb) + p
(
–b

 – b

)

– det
(
B′′) = , ()

with P satisfying the Riccati equation ().

Proof The proof can be directly derived from Equation (). �

Now, we can conclude the following corollary.

Corollary  Suppose b = b, b = b, and det(B′′) = . Then, the linear least mean squares
estimator announced in Theorem , is physically realizable if and only if p + p = p.

The following corollary shows the difficulty of finding a physical realizable least mean
squares estimator for some particular forms of P, B′ and B′′.

Corollary  Suppose b = b, b = b, d = d, and d = d. Then, it is impossible to realize
physically a linear least mean squares estimator of the form given in () such that p =
p = p.

Proof By Corollary , we know that if b = b, b = b, and det(B′′) = , then the physi-
cal realizability condition () implies that p + p = p. Thus, when p = p = p, this
condition is satisfied.

However, note that a least mean squares estimator should satisfy Equation (). Also, we
should take into account the facts that b = b, b = b, d = d, and d = d. Therefore, the
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steady state solution P = limt→∞ Ce(t) of the Riccati equation (), if there exists, should
satisfy the following

(ap + ap) –
(
b

 + b

)
(p – p) + d

 + d
 = ,

ap + ap + (p – p)(p – p) + d
 + d

 = , ()

(ap – ap) –
(
b

 + b

)
(p – p) + d

 + d
 = ,

where we have used a = –a, since by physical realizability of the plant, A should satisfy
the following

AJ + JAT = .

We can observe that if p = p = p, the matrix A should have the following form

A =

(
a a

a –a

)

, with a – a = a. ()

Note that in this case K = B′, since PCT = . Also, we know that A – KC = A – B′C
should be a Hurwitz matrix (see e.g., [, ]). However, we have A – B′C = A, since B′C =
B′JB′T J = . Now, it remains to show that A with its particular form given in () could
not be a Hurwitz matrix. It is sufficient to find the eigenvalues of A. We have

det(A – λI×) = –a
 + λ – aa = ,

with a – a = a. This implies that λ = (a + a). Now, it is clear that A could not be a
Hurwitz matrix, i.e., all of its eigenvalues have negative real parts. �

This result shows that in order to obtain conditions on B, which make the linear least
mean squares estimator given in Theorem  physically realizable (for e.g., see Equation
()), we need to suppose some constraints on P. This demonstrates the difficulty to find
an appropriate plant whose least mean squares estimator is physically realizable.

.. Case : B′ = 
Let us announce the following corollary for this special case.

Corollary  If B′ = . Then, the estimator of the form () is a physical realizable least
mean squares estimator if and only if

(I) For canonical �, we have K = , and B′′ diag nw–ny


(J)B′′T = ;
(II) For degenerate canonical � = diag(n′×n′ , diag n–n′


(J)), we have

(i) If diag(n′×n′ , diag n–n′


(I))CT = CT , then K = , and B′′ diag nw–ny


(J)B′′T = .
(ii) If diag(n′×n′ , diag n–n′


(I))CT �= CT , then K = PCT , and

–B′′ diag nw–ny


(J)B′′T + PCT diag ny


(J)CP = , with P satisfying

Ṗ(t) = AP(t) + P(t)AT – P(t)
(
CT C

)
P(t) + B′′B′′T ,

P() = Ce().
()
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(iii) Let us write C = [C′
ny×n′ C′′

ny×(n–n′)]. Then, if

diag
(
n′×n′ , diag n–n′


(I)

)
CT �= CT

and C′T diag ny


(J)C′ = , then K = PCT , and B′′ diag nw–ny


(J)B′′T = , with P
satisfying the Riccati equation ().

Proof If � is canonical, then we find K = , since B′ =  implies C =  by physical real-
izability conditions given in Theorem  (Equation ()). Then, we can use the results of
Corollary , where by replacing B′ =  in Equations () and (), we find the conditions
given in part (I).

However, if � is degenerate canonical, C is not necessarily zero if C� = . In this case,
we find K = PCT . If diag(n′×n′ , diag n–n′


(I))CT = CT , then C = . This proves the results

given in (i) of part (II).
But if diag(n′×n′ , diag n–n′


(I))CT �= CT , then we have to replace B′ =  in Equations ()

and (), but C is not necessarily zero. This proves the conditions (ii) of part (II). The
condition (iii) in part (II) can be derived from condition (ii). Also, by noting that C� = ,
implies C′′ = . �

Note that B′ =  implies C� = . Roughly speaking, when C� = , the non-commutative
filter obtained in the above theorem, could also be realized with Homodyne or Hetrodyne
detection. Since, no quantum information is transferred from the plant to the filter in this
case. This is like the classical filtering cases of Homodyne or Heterodyne detection, where
one always ends up taking a single quadrature of the field.

4.2 Consistency with standard results
In this subsection, we recall the standard results, i.e., Belavkin-Kalman and classical
Kalman filtering. They can be respectively considered as special cases when the output
is commutative but the plant’s dynamics is non-commutative and when the output and
the plant’s dynamics are both commutative.

Non-commutative dynamics, commutative (classical) outputs It can easily be shown that
the least mean squares estimators found in Theorem  are reduced to Belavkin-Kalman
filters [] under the assumptions that Belavkin used, i.e., the commutativity of the outputs
and the non-demolition property.

Take Yt to be commutative, that is y(t) is self-adjoint for each t and [y(t), y(s)T ] =  for all
s, t. By the spectral theorem, [], Theorem ., y(t) corresponds to a classical stochastic
process, the measurement process. Such continuous measurement signal arise in Homo-
dyne detection [].

For the commutative outputs, we have the following correlation for the observation pro-
cess dy

dy(t) dyT (t) = Fy dt,

with Fy = Iny×ny . Note that we have the following relation between Fw and Fy,

DFwDT = Fy,

with D = [Iny×ny ny×(nw–ny)].
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Therefore, Fw takes the following form

Fw = Inw×nw + i diag
(
ny×ny , diag nw–ny


(J)

)
. ()

It is well established that the optimal filter satisfies the following dynamics

dx̂(t) = Ax̂(t) dt +
(
BDT + P(t)CT)(

dy(t) – Cx̂(t) dt
)
, ()

with x̂() = E[x()] = x̄(), and

� =


E

[(
x() – x̄()

)(
x() – x̄()

)T +
((

x() – x̄()
)(

x() – x̄()
)T)T]

.

Remark that the variable x̂ has zero commutation relation for any t ≥ , i.e.,

x̂(t)x̂(t)T –
(
x̂(t)x̂(t)T)T = , ()

which means that x̂ is a classical variable.
The real symmetric matrix P(t) := 

E[e(t)e(t)T + (e(t)e(t)T )T ] satisfies the following Ric-
cati equation

Ṗ(t) =
(
A – K(t)C

)
P(t) + P(t)

(
A – K(t)C

)T +
(
B – K(t)D

)(
B – K(t)D

)T ,

P() = �.

Classical Kalman filtering The classical linear stochastic dynamics is described by clas-
sical variables as follows

dx(t) = Ax(t) dt + B dw,

dy(t) = Cx(t) dt + D dw,
()

where A, B, C and D are real matrices in R
n×n, Rn×nw and R

ny×n and R
ny×nw , and w is

a vector of classical Wiener processes, with dw(t) dw(t)T = Inw×nw dt. Take Y(t) as the
algebra generated by the observation processes previous to time t, defined by Y(t) :=
span{(y(s))≤s≤t}.

It is well known that the classical Kalman filter [, ] satisfies the following dynamics

dx̂(t) = Ax̂(t) dt +
(
BDT + P(t)CT)(

DDT)–(dy(t) – Cx̂(t) dt
)
,

with x̂() = E[x()] = x̄() and E[(x() – x̄())(x() – x̄())T ] = �.
The covariance of the error P(t) = E(e(t)eT (t)) satisfies the following Riccati equation

Ṗ(t) = (A – KC)P(t) + P(t)(A – KC)T +
(
B(t) – K(t)D

)(
B(t) – K(t)D

)T ,

P() = �.
()

Note that for the classical Kalman filter, we have

Fw = Inw×nw , Fy = Iny×ny and � = n×n.
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4.3 Construction of coherent observers with least mean squares estimators
Suppose that the linear least mean squares estimator () does not satisfy the constraints
of physical realizability given in Theorem . Then, we can allow additional vacuum noise
inputs to the least mean squares estimator () such that the resulting system is physically
realizable. Suppose that the following estimator is physically realizable

dx̃ = (A – KC)x̃ + K dy + b dv,

with dv dvT = Fv dt, where Fv = Inv×nv + i diag nv


(J), and with nv positive even integer. Also,
we suppose that dv is independent of dw. This estimator is called a coherent observer [],
since it tracks in average the plant dynamics () when A – KC is Hurwitz, and is physically
realizable. The error covariance matrix is defined by the following

P̃(t) := Cẽ(t),

where Cẽ is defined in Equation () and ẽ = x – x̃. It is not difficult to show that the error
covariance matrix satisfies the following Riccati equation

˙̃P(t) =
(
A – B′C

)
P̃(t) + P̃(t)

(
A – B′C

)T – P̃(t)
(
CT C

)
P̃(t) + B′′B′′T + bbT ,

P̃() = Cẽ().
()

The steady state solution of the above Riccati equation, if there exists, is given by P̃ =
limt→∞ Cẽ(t). Then, the performance can be defined by the following

J̃ = Tr(P̃).

In the following, we give some examples. However, in this paper, we do not discuss differ-
ent algorithms that can be considered to make least mean squares estimators physically
realizable. We choose a matrix b that can make the least mean squares estimator physi-
cally realizable and we compare the performance of the estimator x̃ with the least mean
squares estimator x̂ (see e.g., [, ] for more details on different algorithms to design
coherent observers).

4.4 Examples
In the following, we give some examples from the literature to illustrate the results of this
section. Also, these examples show the difficulty to find an example where construction
of a physically realizable least mean squares estimator is feasible.

Example  Consider an optical cavity of the form

dx(t) = –κ/x(t) dt –
√

κ dw(t),

dy(t) =
√

κx(t) dt + dw(t),

where dw(t) dw(t)T = (I× + iJ) dt and � = J . Therefore, we have [dy(t), dyT (t)] = J dt, i.e.,
the output processes are non-commutative.
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Take P =
( p p

p p

)
. Note that for κ >  arbitrary, we get the following Riccati equation

κp – κp
 – κp

 = ,

κp – κpp – κpp = ,

–κp
 + κp – κp

 = .

This implies that P = I× and K = ×. Therefore, we get the following estimator

dx̂(t) = –κ/x̂(t) dt. ()

This estimator seems trivial as there is no dy term in the dynamics of the estimator. So no
information from the system is used to compute the estimate. As a consequence, it does
not matter if y be a commutative or non-commutative process, since K = ×, and dy, it
does not appeared in the dynamics of the estimator. However, note that the estimator is
physically realizable if and only if κ = , since x̂ is a process with the commutation � = J .
Also, remark that κ =  means that the system would be decoupled from the field. Partic-
ularly, the estimator () is not useful in practice, as there is no dy term. Hence, there is
no interest to make it physically realizable (when κ �= ) by adding some vacuum noises.

Example  Now consider a dynamic squeezer. This is an optical cavity with a non-linear
element inside. After appropriate linearizations, an optical squeezer can be described by
the following QSDE (see e.g., [, ]) if we assume that χ = χr + iχi, and χr = ,

dx =

(
– 

 (κ + κ) –χi

–χi – 
 (κ + κ)

)

x dt –
√

κ dw –
√

κ dw,

dy =
√

κx dt + dw,

where dw(t) dw(t)T = (I× + iJ) dt, dw(t) dw(t)T = (I× + iJ) dt, and � = J . We have the
following commutation relations for the output processes, [dy(t), dyT (t)] = J dt.

For any arbitrary parameters κ ≥ , κ ≥ , and χi, reals, the physical realizability con-
straint () is satisfied if and only if

κ – κ – κp – κp
 – κp + κpp = , ()

with P =
( p p

p p

)
. The matrix P should satisfy the Riccati equation (), which becomes

κ + (κ – κ)p – κp
 – κp

 – pχi = ,

(κ – κ)p – κpp – κpp – pχi – pχi = , ()

κ – κp
 + (κ – κ)p – κp

 – pχi = .

If we take B′ =  (with previous notation), i.e., κ = , the physically realizable constraint
() is satisfied if and only if κ = . This means that both field channels are decoupled
from the system. Moreover, if we take κ = κ = , the Riccati equation () has not a
unique solution. Also, for κ ≥  and κ > , the physical realizability condition given in
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() imposes a constraint on the form of P. This shows the restrictiveness of physical
realizability constraints.

Now take κ = ., κ = ., and χi = .. In this case, we find P =
( . –.

–. .

)
, and

K =
( . –.

–. .

)
. Therefore, we get the following least mean squares estimator,

dx̂ =

(
–. –.
–. –.

)

x̂ dt +

(
. –.
–. .

)

dy ()

which is not physically realizable. We have J(K) = Tr(P) = ..
Obviously, we can make the least mean squares estimator () physically realizable by

adding a vacuum noise as follows

dx̃ =

(
–. –.
–. –.

)

x̃ dt +

(
. –.
–. .

)

dy+

(
. 

 .

)

dv,

with dv(t) dv(t)T = (I× + iJ) dt. We find P̃ =
( . –.

–. .

)
. Therefore, J̃(K) = Tr(P̃) =

.. Remark that the form of the estimator in above is not unique. We recall that the
study of different algorithms to design coherent observers is beyond the scope of this pa-
per.

Example  Consider a degenerate parametric amplifier (DPA) described as follows (in
the quadrature representation)

dx =

(
– 

κ + εr εi

εi – 
κ – εr

)

x dt –
√

κ dw,

dy =
√

κx dt + dw.

Here, � = J , dw(t) dwT (t) = (I× + iJ) dt, then, [dy(t), dyT (t)] = J dt. Suppose κ ≥ , εr , and
εi are reals. Also, take P =

( p p
p p

)
. Then, P satisfies the following Riccati equation obtained

from Equation (),

(εr + κ)p – κp
 + εip – κp

 = ,

εip + κp – κpp + εip – κpp = , ()

εip – κp
 + (κ – εr)p – κp

 = .

The physical realizability of the least mean squares estimator is satisfied if κ = , since the
constraint () becomes

κ – κp – κp
 – κp + κpp = .

Once again, if κ = , the system would be decoupled from the field. Moreover, in this case,
the Riccati equation () has not a unique solution. Moreover, if κ > , the physical re-
alizability condition in above imposes a constraint on the form of P. This example also,
illustrates the difficulty to find the least mean squares estimator which is physically real-
izable.
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Now take the following parameters: κ = ., εr = ., and εi = .. In this case, we
get P =

( . .
. .

)
and K =

( . .
. –.

)
. The performance of the least mean squares

estimator is given by J(K) = Tr(P) = .
The linear least mean squares estimator has the following form

dx̂ =

(
–. –.
–. –.

)

x̂ dt +

(
. .
. –.

)

dy,

which is not physically realizable. We can make this estimator physically realizable as fol-
lows

dx̃ =

(
–. –.
–. –.

)

x̃ dt +

(
. .
. –.

)

dy+

(
. 

 .

)

dv,

with dv(t) dv(t)T = (I× + iJ) dt. We find P̃ =
( . .

. .

)
. Therefore J̃(K) = Tr(P̃) = ..

Example  Consider the following plant

dx =

(
 

– 

)

x dt +

(
   
 –√

κ  –√
κ

)(
dw

dw

)

,

dy =

(
√

κ 
 

)

x dt + dw,

with � = J , Fw = I× + i diag(J), and Fy = I× + iJ . Then, [dy(t), dyT (t)] = J dt, which
means that the output processes are non-commutative. This plant may be thought of as
representing the scenario of an atom trapped between two mirrors of a three mirror cavity
in the strong coupling limit in which the cavity dynamics are adiabatically eliminated (see
more details in [, ]).

Here, B′ =
(  

 –√
κ

)
. It is trivial that the condition B′JB′T =  is satisfied. We can easily

show that the physical realizability constraint (condition ()) is reduced to

κp = , ()

with P =
( p p

p p

)
satisfying the Riccati equation (), which takes the following form

κ – κp
 + p = ,

–p – κpp + p = , ()

κ – p – κp
 + κ = .

So if κ = , the physical realizability condition () is satisfied. This means that the
system should be decoupled from the field channel dw. However, if κ = , for  �= , the
Riccati equation () has no solution if κ �= . Moreover, the Riccati equation () has not
a unique solution if κ = κ = . Also, if p = , the condition () is satisfied. However, it is
not difficult to show that there is no positive definite solution to the Riccati equation above
in this case. This illustrates once again the restrictive nature of the physical realizability
conditions.
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Now take κ = κ = . and  = .. The linear least mean squares estimator takes the
following form

dx̂ =

(
–. .
–. 

)

x̂ dt +

(
. 
. –.

)

dy.

This estimator is not physically realizable which is also conform with Corollary , since
the condition () is not satisfied in this example.

We can certainly add vacuum noise term b dv (with dv(t) dv(t)T = (I× + iJ) dt) which
is independent of dw to the estimator above to make it physically realizable. Therefore,
take the following estimator

dx̃ =

(
–. .
–. 

)

x̃ dt +

(
. 
. –.

)

dy +

(
. 

 .

)

dv.

Let us write the performance for estimators x̂ and x̃ respectively as follows, P =
( . .

. .

)
, therefore, J(K) = ..

For x̃, we find P̃ =
( . .

. .

)
, then J̃(K) = Tr(P̃) = ..

Example  Consider the following example which is borrowed from [, ]

dx = γ

(
– – cos(θ ) sin(θ )

– sin(θ ) – – cos(θ )

)

x dt +
√

γ

(
– – cos(θ ) – sin(θ )

sin(θ ) – – cos(θ )

)

dw,

dy =
√

γ

(
 + cos(θ ) – sin(θ )

sin(θ )  + cos(θ )

)

x dt + dw,

where dw(t) dwT (t) = (I× + iJ) dt, � = J , and [dy(t), dyT (t)] = J dt. This is a simple exam-
ple of all-optical feedback scheme where the light from one end of a cavity is taken and
reflect it back into the other. For simplicity, it is assumed a bath in the vacuum state and a
cavity with equal transmitivities at both end-mirrors.

Our aim is to see whether appropriate parameters θ and γ exist such that the linear
least mean squares estimator becomes automatically physically realizable. The matrix P =
( p p

p p

)
should satisfy Riccati equation (). After some calculations, we get


(
 + cos(θ )

)
p +  sin(θ )p –

(
 +  cos(θ )

)(
p

 + p

)

= ,


(
 + cos(θ )

)
p + sin(θ )p – p sin(θ ) –

(
 +  cos(θ )

)
(pp + pp) = ,


(
 + cos(θ )

)
p –  sin(θ )p –

(
 +  cos(θ )

)(
p

 + p

)

= .

Thus, we find P = I× and K = ×. Therefore, the linear least mean squares estimator
has the following form

dx̂ = γ

(
– – cos(θ ) sin(θ )

– sin(θ ) – – cos(θ )

)

x̂ dt,

which is not an interesting estimator in practice as there is no dy term, similar to Exam-
ple .
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Now we find θ and γ such that the least mean squares estimator proposed by Theorem 
be physically realizable. To do so, we should solve the following equation which comes
from the physical realizability condition given in Equation ()

γ

(
 – –  cos(θ )

 +  cos(θ ) 

)

= ×.

This equation is satisfied if γ =  or (and) θ = kπ (with k an odd number). When γ = ,
this means that the coupling to the field is zero. Also, θ corresponds to the phase of the
vacuum light which is picked up when reflected by the cavity mirror. So, when θ = kπ , with
k an odd number, this means that the damping through the mirrors can be completely
eliminated (see more details in []). Obviously, for these cases, we have A = B = C = ,
(with previous notations) which is meaningless.

We have observed in the examples above, constructing physically realizable least mean
squares estimators was impossible when B′ �=  or we should consider some constraints
on the matrix P which makes the problem hard and sometimes impossible to solve. This
shows the restrictiveness of the physical realizability constraints. Also, when B′ = , the
physically realizable least mean squares estimators are not well defined. Supported by
these examples and some others which are not given in this paper, we conclude that maybe
it is impossible to find examples which could result in physically realizable least mean
squares estimators without any additional quantum noises when B′ �= . (Note that the
case B′ =  is not an interesting case, since it could also be realized with Homodyne or Het-
rodyne detection, as mentioned before, below Corollary .) However, we could not show
this in general case, maybe it is wrong. Also, note that finding examples is a hard problem
since we should solve the quadratic equations in P (Equation ()) where we obtain P as a
function of free parameters of the matrix A, and B. Then, these free parameters could be
determined by replacing P in the physical realizability constraints (Equation ()).

5 Conclusion
We have obtained non-commutative linear least mean squares estimators for linear QS-
DEs by extending Belavkin-Kalman filters to the case where the output processes are non-
commutative. We have assumed that these least mean squares estimators are given as a
linear combination of innovation processes. Furthermore, we studied the physical realiz-
ability of such estimators for the general case and some special cases.

We have observed that when B′ = , it is more simple to construct a physically re-
alizable least mean squares estimator, specially for � degenerate canonical and when
CT diag ny


(J)C = . Since, in this case, the physical realizability condition does not depend

on the form of P (see more details in Corollary ). However, roughly speaking, for this case,
the non-commutative filter could also be realized by Homodyne or Hetrodyne detection
as C� = . In general, finding examples which satisfy physical realizability conditions, it
is difficult without any assumptions on P. These assumptions create constraints on their
associated Riccati equations (see e.g., Theorem  and Corollaries -). Moreover, based
on our observations, we can conclude that maybe, the construction of a physically real-
izable least mean squares estimator without any additional quantum noises is impossible
when B′ �= . Generally speaking, the results presented here show the restrictive nature of
physical realizability conditions.
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Indeed, this work does not show that the best estimate based on the knowledge of the
non-commutative output processes, and under the constraints of the physical realizabil-
ity, has the form of the proposed linear estimator (). Further research is required to
solve the optimal filtering problem under the non-convex constraints imposed by physi-
cal realizability conditions. Furthermore, the optimal filtering problem when the coherent
controllers are added into the plant’s dynamics (see e.g., [, ]) can be considered as a
future research plan.
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Endnotes
a The notation [A,B] corresponds to AB – BA.
b Here 0m×n corresponds tom× n zero matrix.
c The notation XT corresponds to the transpose of the matrix X .
d Here In×n is the n× n identity matrix.
e If X and Y are column vectors of operators, the commutator is defined by [X ,YT ] = XYT – (YXT )T .
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