14 research outputs found

    A comparative study on three quantitating methods of microalgal biomass

    Get PDF
    2265-2272Nannochloropsis oculata, Nannochloropsis salina, Nannochloropsis oceanica, Phaeodactylum tricornutum and Cylindrotheca fusiformis were cultured in liquid f/2 medium with aeration till the end of exponential growth phase and serially diluted into eight cell suspensions, and cell concentration, optical density and dry weight in each suspension were determined. The cell density was counted on a hemocytometer, while optical density was measured in the spectrophotometer at 750 nm and dry weight was assayed after a lyophilization procedure. We found significant linear correlations between cell density, optical density and dry weight. When the cell concentration was low, the correlation between optical density and cell density was stronger than that between dry weight and cell density. When the cell concentration was high, the dry weight method was more accurate than other two, thus being applicable to single and high quality measurement

    Enhancing the Lipid Content of Nannochloropsis oceanica

    No full text

    UDP-glucose pyrophosphorylase as a target for regulating carbon flux distribution and antioxidant capacity in Phaeodactylum tricornutum

    No full text
    Abstract UDP-glucose pyrophosphorylase (UGPase) is a key enzyme for polysaccharide synthesis, and its role in plants and bacteria is well established; however, its functions in unicellular microalgae remain ill-defined. Here, we perform bioinformatics, subcellular localization as well as in vitro and in vivo analyses to elucidate the functions of two UGPs (UGP1 and UGP2) in the model microalga Phaeodactylum tricornutum. Despite differences in amino acid sequence, substrate specificity, and subcellular localization between UGP1 and UGP2, both enzymes can efficiently increase the production of chrysolaminarin (Chrl) or lipids by regulating carbon flux distribution without impairing growth and photosynthesis in transgenic strains. Productivity evaluation indicate that UGP1 play a bigger role in regulating Chrl and lipid production than UGP2. In addition, UGP1 enhance antioxidant capacity, whereas UGP2 is involved in sulfoquinovosyldiacylglycerol (SQDG) synthesis in P. tricornutum. Taken together, the present results suggest that ideal microalgal strains can be developed for the industrial production of Chrl or lipids and lay the foundation for the development of methods to improve oxidative stress tolerance in diatoms

    Treating wastewater by indigenous microalgae strain in pilot platform located inside a municipal wastewater treatment plant

    No full text
    Various resources from a municipal wastewater treatment plant (MWTP) are available for microalgae cultivation plants, suggesting that a combination of these technologies can be used to produce microalgae biomass and remove contaminants at a low cost. In this study, the growth performance and nutrient removal efficiency of an indigenous Scenedesmus sp. in various wastewater media with different exchange patterns were investigated firstly, then transferred to a pilot-scale photobioreactor (located inside a MWTP) for bioremediation use. The temperature and pH of the platform were maintained at 15–30°C and 7.6, respectively. The NH+4− N, NO−3− N, and PO3−4− P of the wastewater could be reduced to below 0.05, 0.40, and 0.175 mg L–1, respectively. Our results indicate that microalgae cultivation using the resources of a MWTP can achieve high algal biomass productivity and nutrient removal rate. Our study also suggests that efficient technology for controlling zooplankton needs to be developed

    Growth-promoting bacteria double eicosapentaenoic acid yield in microalgae

    No full text
    High-yielding microalgae present an important commodity to sustainably satisfy burgeoning food, feed and biofuel demands. Because algae-associated bacteria can significantly enhance or reduce yields, we isolated, identified and selected highly-effective “probiotic” bacterial strains associated with Nannochloropsis oceanica, a high-yielding microalga rich in eicosapentaenoic acid (EPA). Xenic algae growth was significantly enhanced by co-cultivation with ten isolated bacteria that improved culture density and biomass by 2.2- and 1.56-fold, respectively (1.39 × 10 cells mL; 0.82 g L). EPA contents increased up to 2.25-fold (to 39.68% of total fatty acids). Added probiotic bacteria possessed multiple growth-stimulating characteristics, including atmospheric nitrogen fixation, growth hormone production and phosphorous solubilization. Core N. oceanica-dominant bacterial microbiomes at different cultivation scales included Sphingobacteria, Flavobacteria (Bacteroidetes), and α, γ-Proteobacteria, and added probiotic bacteria could be maintained. We conclude that the supplementation with probiotic algae-associated bacteria can significantly enhance biomass and EPA production of N. oceanica

    Enhancement of hemostatic properties of Cyclotella cryptica frustule through genetic manipulation

    No full text
    Abstract Background The silicified cell wall of diatoms, also known as frustule, shows huge potential as an outstanding bio-nanomaterial for hemostatic applications due to its high hemostatic efficiency, good biocompatibility, and ready availability. As the architectural features of the frustule determine its hemostatic performance, it is of great interest to develop an effective method to modify the frustule morphology into desired patterns to further improve hemostatic efficiency. Results In this study, the gene encoding Silicalemma Associated Protein 2 (a silicalemma-spanning protein) of Cyclotella cryptica (CcSAP2) was identified as a key gene in frustule morphogenesis. Thus, it was overexpressed and knocked down, respectively. The frustule of the overexpress lines showed no obvious alteration in morphology compared to the wild type (WT), while the size, specific surface area (BET), pore volume, and pore diameter of the knockdown strains changed greatly. Particularly, the knockdown frustules achieved a more pronounced coagulation effect and in vivo hemostatic performance than the WT strains. Such observations suggested that silicalemma proteins are ideal genetic encoding targets for manipulating frustule morphology associated hemostatic properties. Furthermore, the Mantel test was adopted to identify the key morphologies associated with C. cryptica bleeding control. Finally, based on our results and recent advances, the mechanism of frustule morphogenesis was discussed. Conclusion This study explores a new strategy for enhancing the hemostatic efficiency of the frustule based on genetic morphology modification and may provide insights into a better understanding of the frustule morphogenesis mechanism

    The NanDeSyn database for Nannochloropsis systems and synthetic biology

    No full text
    Nannochloropsis species, unicellular industrial oleaginous microalgae, are model organisms for microalgal systems and synthetic biology. To facilitate community-based annotation and mining of the rapidly accumulating functional genomics resources, we have initiated an international consortium and present a comprehensive multi-omics resource database named Nannochloropsis Design and Synthesis (NanDeSyn; ). Via the Tripal toolkit, it features user-friendly interfaces hosting genomic resources with gene annotations and transcriptomic and proteomic data for six Nannochloropsis species, including two updated genomes of Nannochloropsis oceanica IMET1 and Nannochloropsis salina CCMP1776. Toolboxes for search, Blast, synteny view, enrichment analysis, metabolic pathway analysis, a genome browser, etc. are also included. In addition, functional validation of genes is indicated based on phenotypes of mutants and relevant bibliography. Furthermore, epigenomic resources are also incorporated, especially for sequencing of small RNAs including microRNAs and circular RNAs. Such comprehensive and integrated landscapes of Nannochloropsis genomics and epigenomics will promote and accelerate community efforts in systems and synthetic biology of these industrially important microalgae
    corecore