129 research outputs found

    Impacts of topography change on saltwater intrusion over the past decade in the Changjiang Estuary

    Get PDF
    Saltwater intrusion in estuaries is mainly controlled by tides and river discharge, as well as by topography and other factors. The Changjiang estuary has been seen a significant change in its topography from the data obtained in 2007 and 2017. In this study, a well-validated 3D numerical model was used to simulate and analyze the residual water and salt transport, water diversion ratio (WDR) in bifurcated channels and water resources in the Changjiang Estuary in 2007 and 2017. The comparisons of the model results showed that due to the North Branch becoming much shallower and narrower over the period from 2007 to 2017, the overall salinity in the North Branch decreased and the intensity of saltwater spillover (SSO) from the North Branch into the South Branch weakened. In the North Channel, the simulated residual or net transection water flux (NTWF) and WDR decreased during spring tides, resulting in increased saltwater intrusion. During neap tides, the saltwater intrusion was weakened despite the decreased NTWF and WDR because the water depth at the river mouth became shallower. The changes of topography during that period also resulted in changes of DWR, NTWF, salt transport across the tidal flats and dykes in the North Passage, South Passage and the South Channel, as well as overall dynamic mechanism. The results indicated that the salinity at the water intakes of the three reservoirs in the estuary slightly decreased, indicating that the time that reservoirs can take water from the estuary become longer in dry seasons. In the scenario of complete silt-up of the North Branch, the saltwater intrusion was weakened in the South Branch because of the disappearance of the SSO, which was favorable for the utilization of freshwater resources, but enhanced in the North Channel, North and South Passages. The overall influence from the topographic change over the period is that the saltwater intrusion is weakened in the North Branch, and enhanced during spring tides and weakened during neap tides in the North Channel, North and South Passages. Sediment accretion in the North Branch is favorable for utilization of freshwater resources

    LAMOST Observations in 15 \textit{K}2 Campaigns: I. Low resolution spectra from LAMOST DR6

    Get PDF
    The LAMOST-\textit{K}2 (L\textit{K}2) project, initiated in 2015, aims to collect low-resolution spectra of targets in the \textit{K}2 campaigns, similar to LAMOST-\textit{Kepler} project. By the end of 2018, a total of 126 L\textit{K}2 plates had been observed by LAMOST. After cross-matching the catalog of the LAMOST data release 6 (DR6) with that of the \textit{K}2 approved targets, we found 160,619 usable spectra of 84,012 objects, most of which had been observed more than once. The effective temperature, surface gravity, metallicity, and radial velocity from 129,974 spectra for 70,895 objects are derived through the LAMOST Stellar Parameter Pipeline (LASP). The internal uncertainties were estimated to be 81 K, 0.15 dex, 0.09 dex and 5 kms1^{-1}, respectively, when derived from a spectrum with a signal-to-noise ratio in the gg band (SNRg_g) of 10. These estimates are based on results for targets with multiple visits. The external accuracies were assessed by comparing the parameters of targets in common with the APOGEE and GAIA surveys, for which we generally found linear relationships. A final calibration is provided, combining external and internal uncertainties for giants and dwarfs, separately. We foresee that these spectroscopic data will be used widely in different research fields, especially in combination with \textit{K}2 photometry.Comment: 31 pages, 9 figures, 6 tables, accepted by ApJ

    Phase II of the LAMOST-Kepler/K2 survey. I. Time series of medium-resolution spectroscopic observations

    Get PDF
    Phase \RNum{2} of the LAMOST-{\sl Kepler/K}2 survey (LK-MRS), initiated in 2018, aims at collecting medium-resolution spectra (R7,500R\sim7,500; hereafter MRS) for more than 50,00050,000 stars with multiple visits (60\sim60 epochs) over a period of 5 years (2018 September to 2023 June). We selected 20 footprints distributed across the {\sl Kepler} field and six {\sl K}2 campaigns, with each plate containing a number of stars ranging from 2,000\sim2,000 to 3,000\sim 3,000. During the first year of observations, the LK-MRS has already collected 280,000\sim280,000 and 369,000\sim369,000 high-quality spectra in the blue and red wavelength range, respectively. The atmospheric parameters and radial velocities for 259,000\sim259,000 spectra of 21,05321,053 targets were successfully calculated by the LASP pipeline. The internal uncertainties for the effective temperature, surface gravity, metallicity, and radial velocity are found to be 100100\,K, 0.150.15\,dex, 0.090.09\,dex, and 1.001.00\,km\,s1^{-1}, respectively. We found 14,99714,997, 20,09120,091, and 1,5141,514 stars in common with the targets from the LAMOST low-resolution survey (LRS), GAIA and APOGEE, respectively, corresponding to a fraction of 70%\sim70\%, 95%\sim95\% and 7.2%\sim7.2\%. In general, the parameters derived from LK-MRS spectra are consistent with those obtained from the LRS and APOGEE spectra, but the scatter increases as the surface gravity decreases when comparing with the measurements from APOGEE. A large discrepancy is found with the GAIA values of the effective temperature. The comparisons of radial velocities of LK-MRS to GAIA and LK-MRS to APOGEE nearly follow an Gaussian distribution with a mean μ1.10\mu\sim1.10 and 0.730.73\,km\,s1^{-1}, respectively.Comment: 24 pages, 15 figures, 4 tables, ApJS, accepte

    Optical Biosensors Based on Semiconductor Nanostructures

    Get PDF
    The increasing availability of semiconductor-based nanostructures with novel and unique properties has sparked widespread interest in their use in the field of biosensing. The precise control over the size, shape and composition of these nanostructures leads to the accurate control of their physico-chemical properties and overall behavior. Furthermore, modifications can be made to the nanostructures to better suit their integration with biological systems, leading to such interesting properties as enhanced aqueous solubility, biocompatibility or bio-recognition. In the present work, the most significant applications of semiconductor nanostructures in the field of optical biosensing will be reviewed. In particular, the use of quantum dots as fluorescent bioprobes, which is the most widely used application, will be discussed. In addition, the use of some other nanometric structures in the field of biosensing, including porous semiconductors and photonic crystals, will be presented

    LAMOST Observations in the Kepler Field. II. Database of the Low-resolution Spectra from the Five-year Regular Survey

    Get PDF
    The LAMOST-Kepler (LK-) project was initiated to use the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) to make spectroscopic follow-up observations for the targets in the field of the Kepler mission. The Kepler field is divided into 14 subfields that are adapted to the LAMOST circular field with a diameter of 5°. During the regular survey phase of LAMOST, the LK-project took data from 2012 June to 2017 June and covered all 14 subfields at least twice. In particular, we describe in this paper the second Data Release of the LK-project, including all spectra acquired through 2015 May-2017 June together with the first round observations of the LK-project from 2012 June to 2014 September. The LK-project now counts 227,870 spectra of 156,390 stars, among which we have derived atmospheric parameters ({log}g, T eff, and [Fe/H]) and heliocentric radial velocity for 173,971 spectra of 126,172 stars. These parameters were obtained with the most recent version of the LAMOST Stellar Parameter Pipeline v 2.9.7. Nearly one half, namely 76,283 targets, are observed both by the LAMOST and Kepler telescopes. These spectra, establishing a large spectroscopy library, will be useful for the entire astronomical community, particularly for planetary science and stellar variability on Kepler targets. Based on observations collected with the Large Sky Area Multi-Object Fiber spectroscopic Telescope (LAMOST), which is located at the Xinglong Observatory, China
    corecore