18 research outputs found

    Obesity changes the human gut mycobiome

    Get PDF
    The human intestine is home to a diverse range of bacterial and fungal species, forming an ecological community that contributes to normal physiology and disease susceptibility. Here, the fungal microbiota (mycobiome) in obese and non-obese subjects was characterized using Internal Transcribed Spacer (ITS)-based sequencing. The results demonstrate that obese patients could be discriminated by their specific fungal composition, which also distinguished metabolically “healthy” from “unhealthy” obesity. Clusters according to genus abundance co-segregated with body fatness, fasting triglycerides and HDL-cholesterol. A preliminary link to metabolites such as hexadecanedioic acid, caproic acid and N-acetyl-L-glutamic acid was also found. Mucor racemosus and M. fuscus were the species more represented in non-obese subjects compared to obese counterparts. Interestingly, the decreased relative abundance of the Mucor genus in obese subjects was reversible upon weight loss. Collectively, these findings suggest that manipulation of gut mycobiome communities might be a novel target in the treatment of obesity

    Dissimilar Impact of a Mediterranean Diet and Physical Activity on Anthropometric Indices: A Cross-Sectional Study from the ILERVAS Project

    Get PDF
    There is a close relationship between lifestyle behaviors and excess adiposity. Although body mass index (BMI) is the most used approach to estimate excess weight, other anthropometric indices have been developed to measure total body and abdominal adiposity. However, little is known about the impact of physical activity and adherence to a Mediterranean diet on these indices. Here we report the results of a cross-sectional study with 6672 middle-aged subjects with low to moderate cardiovascular risk from the Ilerda Vascular (ILERVAS) project. The participants' adherence to physical activity (International Physical Activity Questionnaire short form) and MedDiet (Mediterranean Diet Adherence Screener) was evaluated. Measures of total adiposity (BMI, ClĂ­nica Universidad de Navarra-Body Adiposity Estimator (CUN-BAE), and Deurenberg's formula), central adiposity (waist and neck circumferences, conicity index, waist to height ratio, Bonora's equation, A body adiposity index, and body roundness index), and lean body mass (Hume formula) were assessed. Irrespective of sex, lower indices of physical activity were associated with higher values of total body fat and central adiposity. This result was constant regardless of the indices used to estimate adiposity. However, the association between MedDiet and obesity indices was much less marked and more dependent on sex than that observed for physical activity. Lean body mass was influenced by neither physical activity nor MedDiet adherence. No joint effect between physical activity and MedDiet to lower estimated total or central adiposity indices was shown. In conclusion, physical activity is related to lower obesity indices in a large cohort of middle-aged subjects. MedDiet showed a slight impact on estimated anthropometric indices, with no joint effect when considering both lifestyle variables

    Deficient endoplasmic reticulum-mitochondrial phosphatidylserine transfer causes liver disease

    Get PDF
    Non-alcoholic fatty liver is the most common liver disease worldwide. Here, we show that the mitochondrial protein mitofusin 2 (Mfn2) protects against liver disease. Reduced Mfn2 expression was detected in liver biopsies from patients with nonalcoholic steatohepatitis (NASH). Moreover, reduced Mfn2 levels were detected in mouse models of steatosis or NASH, and its re-expression in a NASH mouse model ameliorated the disease. Liver-specific ablation of Mfn2 in mice provoked inflammation, triglyceride accumulation, fibrosis, and liver cancer. We demonstrate that Mfn2 binds phosphatidylserine (PS) and can specifically extract PS into membrane domains, favoring PS transfer to mitochondria and mitochondrial phosphatidylethanolamine (PE) synthesis. Consequently, hepatic Mfn2 deficiency reduces PS transfer and phospholipid synthesis, leading to endoplasmic reticulum (ER) stress and the development of a NASH-like phenotype and liver cancer. Ablation of Mfn2 in liver reveals that disruption of ER-mitochondrial PS transfer is a new mechanism involved in the development of liver disease

    The cirrhotic liver is depleted of docosahexaenoic acid (DHA), a key modulator of NF-κB and TGFβ pathways in hepatic stellate cells

    No full text
    Liver cirrhosis results from chronic hepatic damage and is characterized by derangement of the organ architecture with increased liver fibrogenesis and defective hepatocellular function. It frequently evolves into progressive hepatic insufficiency associated with high mortality unless liver transplantation is performed. We have hypothesized that the deficiency of critical nutrients such as essential omega-3 fatty acids might play a role in the progression of liver cirrhosis. Here we evaluated by LC-MS/MS the liver content of omega-3 docosahexaenoic fatty acid (DHA) in cirrhotic patients and investigated the effect of DHA in a murine model of liver injury and in the response of hepatic stellate cells (HSCs) (the main producers of collagen in the liver) to pro-fibrogenic stimuli. We found that cirrhotic livers exhibit a marked depletion of DHA and that this alteration correlates with the progression of the disease. Administration of DHA exerts potent anti-fibrogenic effects in an acute model of liver damage. Studies with HSCs show that DHA inhibits fibrogenesis more intensely than other omega-3 fatty acids. Data from expression arrays revealed that DHA blocks TGFβ and NF-κB pathways. Mechanistically, DHA decreases late, but not early, SMAD3 nuclear accumulation and inhibits p65/RelA-S536 phosphorylation, which is required for HSC survival. Notably, DHA increases ADRP expression, leading to the formation of typical quiescence-associated perinuclear lipid droplets. In conclusion, a marked depletion of DHA is present in the liver of patients with advanced cirrhosis. DHA displays anti-fibrogenic activities on HSCs targeting NF-κB and TGFβ pathways and inducing ADPR expression and quiescence in these cells

    Differential effects of experimental and cold-induced hyperthyroidism on factors inducing rat liver oxidative damage

    No full text
    Thyroid hormone-induced increase in metabolic rates is often associated with increased oxidative stress. The aim of the present study was to investigate the contribution of iodothyronines to liver oxidative stress in the functional hyperthyroidism elicited by cold, using as models cold-exposed and 3,5,3'-triiodothyronine (T-3)- or thyroxine (T-4)-treated rats. The hyperthyroid state was always associated with increases in both oxidative capacity and oxidative damage of the tissue. The most extensive damage to lipids and proteins was found in T-3-treated and cold-exposed rats, respectively. Increase in oxygen reactive species released by mitochondria and microsomes was found to contribute to tissue oxidative damage, whereas the determination of single antioxidants did not provide information about the possible contribution of a reduced effectiveness of the antioxidant defence system. Indeed, liver oxidative damage in hyperthyroid rats was scarcely related to levels of the liposoluble antioxidants and activities of antioxidant enzymes. Conversely, other biochemical changes, such as the degree of fatty acid unsaturation and hemoprotein content, appeared to predispose hepatic tissue to oxidative damage associated with oxidative challenge elicited by hyperthyroid state. As a whole, our results confirm the idea that T-3 plays a key role in metabolic changes and oxidative damage found in cold liver. However, only data concerning changes in glutathione peroxidase activity and mitochondrial protein content favour the idea that dissimilarities in effects of cold exposure and T-3 treatment could depend on differences in serum levels of T-4

    When cholesterol is not cholesterol: a note on the enzymatic determination of its concentration in model systems containing vegetable extracts

    No full text
    Abstract Background Experimental evidences demonstrate that vegetable derived extracts inhibit cholesterol absorption in the gastrointestinal tract. To further explore the mechanisms behind, we modeled duodenal contents with several vegetable extracts. Results By employing a widely used cholesterol quantification method based on a cholesterol oxidase-peroxidase coupled reaction we analyzed the effects on cholesterol partition. Evidenced interferences were analyzed by studying specific and unspecific inhibitors of cholesterol oxidase-peroxidase coupled reaction. Cholesterol was also quantified by LC/MS. We found a significant interference of diverse (cocoa and tea-derived) extracts over this method. The interference was strongly dependent on model matrix: while as in phosphate buffered saline, the development of unspecific fluorescence was inhibitable by catalase (but not by heat denaturation), suggesting vegetable extract derived H2O2 production, in bile-containing model systems, this interference also comprised cholesterol-oxidase inhibition. Several strategies, such as cholesterol standard addition and use of suitable blanks containing vegetable extracts were tested. When those failed, the use of a mass-spectrometry based chromatographic assay allowed quantification of cholesterol in models of duodenal contents in the presence of vegetable extracts. Conclusions We propose that the use of cholesterol-oxidase and/or peroxidase based systems for cholesterol analyses in foodstuffs should be accurately monitored, as important interferences in all the components of the enzymatic chain were evident. The use of adequate controls, standard addition and finally, chromatographic analyses solve these issues.</p
    corecore