66 research outputs found

    Kallikrein-related peptidase 6 regulates epithelial-to-mesenchymal transition and serves as prognostic biomarker for head and neck squamous cell carcinoma patients

    Get PDF
    Background: Dysregulated expression of Kallikrein-related peptidase 6 (KLK6) is a common feature for many human malignancies and numerous studies evaluated KLK6 as a promising biomarker for early diagnosis or unfavorable prognosis. However, the expression of KLK6 in carcinomas derived from mucosal epithelia, including head and neck squamous cell carcinoma (HNSCC), and its mode of action has not been addressed so far. Methods: Stable clones of human mucosal tumor cell lines were generated with shRNA-mediated silencing or ectopic overexpression to characterize the impact of KLK6 on tumor relevant processes in vitro. Tissue microarrays with primary HNSCC samples from a retrospective patient cohort (nโ€‰=โ€‰162) were stained by immunohistochemistry and the correlation between KLK6 staining and survival was addressed by univariate Kaplan-Meier and multivariate Cox proportional hazard model analysis. Results: KLK6 expression was detected in head and neck tumor cell lines (FaDu, Cal27 and SCC25), but not in HeLa cervix carcinoma cells. Silencing in FaDu cells and ectopic expression in HeLa cells unraveled an inhibitory function of KLK6 on tumor cell proliferation and mobility. FaDu clones with silenced KLK6 expression displayed molecular features resembling epithelial-to-mesenchymal transition, nuclear ฮฒ-catenin accumulation and higher resistance against irradiation. Low KLK6 protein expression in primary tumors from oropharyngeal and laryngeal SCC patients was significantly correlated with poor progression-free (pโ€‰=โ€‰0.001) and overall survival (pโ€‰<โ€‰0.0005), and served as an independent risk factor for unfavorable clinical outcome. Conclusions: In summary, detection of low KLK6 expression in primary tumors represents a promising tool to stratify HNSCC patients with high risk for treatment failure. These patients might benefit from restoration of KLK6 expression or pharmacological targeting of signaling pathways implicated in EMT

    Evolutionary History of Tissue Kallikreins

    Get PDF
    The gene family of human kallikrein-related peptidases (KLKs) encodes proteins with diverse and pleiotropic functions in normal physiology as well as in disease states. Currently, the most widely known KLK is KLK3 or prostate-specific antigen (PSA) that has applications in clinical diagnosis and monitoring of prostate cancer. The KLK gene family encompasses the largest contiguous cluster of serine proteases in humans which is not interrupted by non-KLK genes. This exceptional and unique characteristic of KLKs makes them ideal for evolutionary studies aiming to infer the direction and timing of gene duplication events. Previous studies on the evolution of KLKs were restricted to mammals and the emergence of KLKs was suggested about 150 million years ago (mya). In order to elucidate the evolutionary history of KLKs, we performed comprehensive phylogenetic analyses of KLK homologous proteins in multiple genomes including those that have been completed recently. Interestingly, we were able to identify novel reptilian, avian and amphibian KLK members which allowed us to trace the emergence of KLKs 330 mya. We suggest that a series of duplication and mutation events gave rise to the KLK gene family. The prominent feature of the KLK family is that it consists of tandemly and uninterruptedly arrayed genes in all species under investigation. The chromosomal co-localization in a single cluster distinguishes KLKs from trypsin and other trypsin-like proteases which are spread in different genetic loci. All the defining features of the KLKs were further found to be conserved in the novel KLK protein sequences. The study of this unique family will further assist in selecting new model organisms for functional studies of proteolytic pathways involving KLKs

    Dicer and miRNA in relation to clinicopathological variables in colorectal cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dicer is aberrantly expressed in several types of cancers. Applying real-time PCR, we detected the expression of Dicer mRNA in normal mucosa (n = 162), primary colorectal cancer (CRC) (n = 162) and liver metastasis (n = 37), and analysed the relationship between Dicer expression and clinicopathological features. We also correlated the expression of Dicer mRNA to the miRNA expression of miR-141, miR-200a, miR-200b, mir-200c and miR-429 in liver metastases.</p> <p>Methods</p> <p>RT-PCR and qPCR were used to analyse the Dicer expression in normal mucosa, primary tumour and liver metastasis by using the High Capacity cDNA Reverse Transcription Kit and TaqManโ„ข<sup>ยฎ </sup>Gene Expression assays for <it>Dicer </it>and <it>GAPDH</it>. RT-PCR and qPCR were used to detect miRNA expression in liver metastases by utilizing TaqMan<sup>ยฎ </sup>MicroRNA Reverse Transcription Kit and TaqMan<sup>ยฎ </sup>miRNA Assays. Statistical analyses were performed with STATISTICA.</p> <p>Results</p> <p>Dicer expression in rectal cancer (3.146 ยฑ 0.953) was higher than in colon cancer (2.703 ยฑ 1.204, P = 0.018). Furthermore the Dicer expression was increased in primary tumours (3.146 ยฑ 0.952) in comparison to that in normal mucosa from rectal cancer patients (2.816 ยฑ 1.009, P = 0.034) but this is not evident in colon cancer patients. Dicer expression in liver metastases was decreased in comparison to that of either normal mucosa or primary tumour in both colon and rectal cancers (P < 0.05). Patients with a high Dicer expression in normal mucosa had a worse prognosis compared to those with a low Dicer expression, independently of gender, age, tumour site, stage and differentiation (P < 0.001, RR 3.682, 95% CI 1.749 - 7.750). In liver metastases, Dicer was positively related to miR-141 (R = 0.419, P = 0.015).</p> <p>Conclusion</p> <p>Dicer is up-regulated in the early development of rectal cancers. An increased expression of Dicer mRNA in normal mucosa from CRC patients is significantly related to poor survival independently of gender, age, tumour site, stage and differentiation.</p

    The Drosophila melanogaster Seminal Fluid Protease โ€œSeminaseโ€ Regulates Proteolytic and Post-Mating Reproductive Processes

    Get PDF
    Proteases and protease inhibitors have been identified in the ejaculates of animal taxa ranging from invertebrates to mammals and form a major protein class among Drosophila melanogaster seminal fluid proteins (SFPs). Other than a single protease cascade in mammals that regulates seminal clot liquefaction, no proteolytic cascades (i.e. pathways with at least two proteases acting in sequence) have been identified in seminal fluids. In Drosophila, SFPs are transferred to females during mating and, together with sperm, are necessary for the many post-mating responses elicited in females. Though several SFPs are proteolytically cleaved either during or after mating, virtually nothing is known about the proteases involved in these cleavage events or the physiological consequences of proteolytic activity in the seminal fluid on the female. Here, we present evidence that a protease cascade acts in the seminal fluid of Drosophila during and after mating. Using RNAi to knock down expression of the SFP CG10586, a predicted serine protease, we show that it acts upstream of the SFP CG11864, a predicted astacin protease, to process SFPs involved in ovulation and sperm entry into storage. We also show that knockdown of CG10586 leads to lower levels of egg laying, higher rates of sexual receptivity to subsequent males, and abnormal sperm usage patterns, processes that are independent of CG11864. The long-term phenotypes of females mated to CG10586 knockdown males are similar to those of females that fail to store sex peptide, an important elicitor of long-term post-mating responses, and indicate a role for CG10586 in regulating sex peptide. These results point to an important role for proteolysis among insect SFPs and suggest that protease cascades may be a mechanism for precise temporal regulation of multiple post-mating responses in females

    Predictions for the future of kallikrein-related peptidases in molecular diagnostics

    Get PDF
    Kallikrein-related peptidases (KLKs) form a cancer-related ensemble of serine proteases. This multigene family hosts the most widely used cancer biomarker that is PSA-KLK3, with millions of tests performed annually worldwide. The present report provides an overview of the biomarker potential of the extended KLK family (KLK1-KLK15) in various disease settings and envisages approaches that could lead to additional KLK-driven applications in future molecular diagnostics. Particular focus is given on the inclusion of KLKs into multifaceted cancer biomarker panels that provide enhanced diagnostic, prognostic and/or predictive accuracy in several human malignancies. Such panels have been described so far for prostate, ovarian, lung and colorectal cancers. The role of KLKs as biomarkers in non-malignant disease settings, such as Alzheimerโ€™s disease and multiple sclerosis, is also commented upon. Predictions are given on the challenges and future directions regarding clinically oriented KLK research

    Transcriptional upregulation of human tissue kallikrein 6 in ovarian cancer: clinical and mechanistic aspects

    Get PDF
    The human tissue kallikrein family (KLK for protein; KLK for gene) includes 15 members. Twelve kallikreins, including KLK6, are concurrently upregulated in ovarian cancer. However, the mechanism of this phenomenon remains unclear. In this study, we measured KLK6 expression in a large series of ovarian tissue cytosols and examined possible mechanisms of KLK6 up-regulation in ovarian cancer. Using a newly developed enzyme-linked immunosorbent assay (ELISA) with two monoclonal antibodies, we quantified KLK6 expression in ovarian tissue cytosols, and confirmed the upregulation of KLK6 in ovarian cancer and its unfavourable prognostic value. We then examined KLK6 mRNA expression using reverse transcriptionโ€“polymerase chain reaction and established its good concordance with KLK6 protein expression. This finding suggested that the KLK6 gene is under transcriptional regulation. We then scrutinised a few mechanisms that could explain KLK6 upregulation. The relative abundance of two KLK6 mRNA transcripts was studied; we found the same differential expression pattern in all samples, regardless of KLK6 levels. Genomic mutation screening of all exons and the 5โ€ฒ-flanking region of the KLK6 gene identified two linked single-nucleotide polymorphisms in the 5โ€ฒ-untranslated region, but neither correlated with KLK6 expression. Ovarian cell lines were separately treated with five steroid hormones. None of the treatments produced significant effects on KLK6 expression. We conclude that KLK6 is transcriptionally upregulated in ovarian cancer, but probably not through alternative mRNA transcript expression, genomic mutation, or steroid hormone induction

    Prediction of ovarian cancer prognosis and response to chemotherapy by a serum-based multiparametric biomarker panel

    Get PDF
    Currently, there are no effective biomarkers for ovarian cancer prognosis or prediction of therapeutic response. The objective of this study was to examine a panel of 10 serum biochemical parameters for their ability to predict response to chemotherapy, progression and survival of ovarian cancer patients. Sera from ovarian cancer patients were collected prior and during chemotherapy and were analysed by enzyme-linked immunosorbent assay for CA125, kallikreins 5, 6, 7, 8, 10 and 11, B7-H4, regenerating protein IV and Spondin-2. The odds ratio and hazard ratio and their 95% confidence interval (95% CI) were calculated. Time-dependent receiver-operating characteristic (ROC) curves were utilised to evaluate the prognostic performance of the biomarkers. The levels of several markers at baseline (c0), or after the first chemotherapy cycle (rc1), predicted chemotherapy response and overall or progression-free survival in univariate analysis. A multiparametric model (c0 of CA125, KLK5, KLK7 and rc1 of CA125) provided predictive accuracy with area under the ROC curve (AUC) of 0.82 (0.62 after correction for overfitting). Another marker combination (c0 of KLK7, KLK10, B7-H4, Spondin-2) was useful in predicting short-term (1-year) survival with an AUC of 0.89 (0.74 after correction for overfitting). All markers examined, except KLK7 and regenerating protein IV, were powerful predictors of time to progression (TTP) among chemotherapy responders. Individual and panels of biomarkers from the kallikrein family (and other families) can predict response to chemotherapy, overall survival, short-term (1-year) survival, progression-free survival and TTP of ovarian cancer patients treated with chemotherapy

    Novel splice variants of prostate-specific antigen and applications in diagnosis of prostate cancer

    No full text
    Objectives: We aimed to identify novel splice variants of prostate-specific antigen/or human kallikrein 3 (PSA/KLK3), the most widely used serum biomarker for case-finding, screening and monitoring of prostate cancer. Design and methods: The full-length sequences of splice variants were assembled as contigs from human ESTs that displayed homology to the cDNA sequence encoding PSA. Expression of variants in clinical samples was analyzed by semi-quantitative RT-PCR. Results: EST database mining led to the identification of seven previously unidentified splice variants encoding PSA-like proteins that are predicted to contain epitope sequences recognized by PSA-specific antibodies, therefore, expression of these isoforms may affect the amount of total PSA measured by established immunoassays. Analysis of the differential expression profile of isoform PSA-SV5 in patients with benign prostate hyperplasia and prostate cancer showed that it is specifically expressed in prostate cancers. Conclusions: A novel splice variant of PSA was identified, PSA-SV5, that may be exploited in clinical diagnosis to distinguish prostate cancer from benign prostate hyperplasia. ยฉ 2008
    • โ€ฆ
    corecore