16 research outputs found

    Status quo and sector readiness for (bio)plastic food and beverage packaging in the 4IR

    Get PDF
    Single-use plastics emanating from the food and beverage industry are polluting the environment, and there is increasing public pressure to find ‘green’ solutions to plastic pollution. The introduction of more bio-based and biodegradable plastics (possibly manufactured by disruptive technologies), increased plastic recycling, and enhanced degradation of plastics (micro, meso, and macro) in the environment can holisticallycontribute to solving the problem for future generations. In order to inform future research, it is imperative that robust background data and information are available. This review provides details about the volumes and categories of food and beverage packaging manufactured and recycled, and available data (qualitative and quantitative) on environmental plastic pollution in South Africa, and to a lesser extent, in Europe andglobally. In addition, current and future trends and technologies for recycling, enhanced degradation, and manufacturing of plastics are discussed, with an emphasis on the manufacture of bioplastics. Significance: Plastic pollution needs to be tackled through a holistic combination of reduced use, enhanced recycling efforts, public education about littering, replacement of selected conventional plastics by degradable alternatives, and enhanced degradation of plastics in the environment

    Minor differences in sand physicochemistry lead to major differences in bacterial community structure and function after exposure to synthetic acid mine drainage

    Get PDF
    The formation of environmentally toxic acidic waste from mining activities is a world-wide problem. Neutralization of this waste can be accomplished by physicochemical and/or biological means. In this short-term study, synthetic acid mine drainage was added to sandfilled mesocosms containing silica-dominated (quartz) sand. Glucose was added as a carbon source for microbial iron and/or sulphate reduction. Replicates contained two separate batches of sand obtained from the same quarry site. The investigations used to assess and compare the chemical and biological functioning of the replicates included system hydraulic conductivity measurements, sand chemistry, effluent chemistry and bacterial community fingerprinting. Minor differences in composition of the sand, including the levels of available nutrients and micronutrients, resulted in major differences in measured parameters. Significant differences in effluent chemistry were found in systems containing different batches of sand. It was demonstrated that the characteristics of the sand and the presence of acid mine drainage impacted the bacterial community structure and function. The importance of the physical substrate on the selection of functional microbial communities in systems remediating AMD should not be under-estimated. The physical substrate should be carefully selected and it may be prudent to include small-scale comparative studies in each particular setting prior to full-scale implementation.Water Research Commission, Cape Peninsula University of Technology and the National Research Foundation of South Africahttp://link.springer.com/journal/12257hb201

    Selection of diazotrophic bacterial communities in biological sand filter mesocosms used for the treatment of phenolic-laden wastewater

    Get PDF
    Agri effluents such as winery or olive mill waste-waters are characterized by high phenolic concentrations. These compounds are highly toxic and generally refractory to biodegradation. Biological sand filters (BSFs) represent inexpensive, environmentally friendly, and sustainable wastewater treatment systems which rely vastly on microbial catabolic processes. Using denaturing gradient gel electrophoresis and terminal-restriction fragment length polymorphism, this study aimed to assess the impact of increasing concentrations of synthetic phenolic-rich wastewater, ranging from 96 mg L−1 gallic acid and138 mg L−1 vanillin (i.e., a total chemical oxygen demand (COD) of 234 mg L−1) to 2,400mg L−1 gallic acid and 3,442 mg L−1 vanillin (5,842 mg COD L−1), on bacterialcommunities and the specific functional diazotrophic community from BSF mesocosms. This amendment procedure instigated efficient BSF phenolic removal, significant modifications of the bacterial communities, and notably led to the selection of a phenolic-resistant and less diverse diazotrophic community. This suggests that bioavailable N is crucial in the functioning of biological treatment processes involving microbial communities, and thus that functional alterations in the bacterial communities in BSFs ensure provision of sufficient bioavailable nitrogen for the degradation of wastewater with a high C/N ratio.Web of Scienc

    Selection of Clostridium spp. in biological sand filters neutralizing synthetic acid mine drainage

    Get PDF
    In this study, three biological sand filter (BSF) were contaminated with a synthetic iron- [1500 mg L-1 Fe(II), 500 mg L-1 Fe(III)] and sulphate-rich (6000 mg L-1 SO2/4-) acid mine drainage (AMD) (pH = 2), for 24 days, to assess the remediation capacity and the evolution of autochthonous bacterial communities (monitored by T-RFLP and 16S rRNA gene clone libraries). To stimulate BSF bioremediation involving sulphate-reducing bacteria, a readily degradable carbon source (glucose, 8000 mg L-1) was incorporated into the influent AMD. Complete neutralization and average removal efficiencies of 81.5 (±5.6)%, 95.8 (±1.2)% and 32.8 (±14.0)% for Fe(II), Fe(III) and sulphate were observed, respectively. Our results suggest that microbial iron reduction and sulphate reduction associated with iron precipitation were the main processes contributing to AMD neutralization. The effect of AMD on BSF sediment bacterial communities was highly reproducible. There was a decrease in diversity, and notably a single dominant operational taxonomic unit (OTU), closely related to Clostridium beijerinckii, which represented up to 65% of the total community at the end of the study period.Web of Scienc

    The effect of biogenic and chemically manufactured silver nanoparticles on the benthic bacterial communities in river sediments

    No full text
    This study was conducted to determine and compare the effect of chemically-synthesised and biogenic silver nanoparticles on the benthic bacterial community structure in mesocosms containing sediment fromthree rivers in geographical sites with different population densities (low, medium, high), and therefore likely to be associated with respective low, moderate and high degrees of anthropogenic input. The nanoparticles were applied at the upper limit expected to accumulate in impacted environments (4 μg kgsed −1). The biomass, concentrations of elements, including selection metals (P, K, Na, K, Ca, Mg, Zn, Cu, Al, Ag) were all significantly higher at the high density than at the low density sites. Bacterial community profiling (terminal restriction fragment length polymorphismand amplicon sequencing) showed that the bacterial community structure in the sediments from the high population density site were resilient to environmental perturbations [adjustment from in-situ to ex-situ (laboratory) conditions], as well as to exposure to silver nanoparticles, with the converse being true for the lowpopulation density site. Results obtained fromamplicon sequencing were interrogated to the lowest taxonomic level with a relative abundance N5%. Proteobacteria was the most abundant phylum in all the sediments. Notable resistance (increased relative abundance) to one or both forms of silver nanoparticles was seen in the class Thermoleophilia, and the orders Myxococcales, Bacteriodales, Pirellules CCU21 and iii 1–15 (class Acidobacteria 6). Conversely, sensitivity was demonstrated in the family Koribacteraceae and the orders Rhizobiales, Ellin 329 and Gemmatales. It is recommended that pro-active environmental monitoring is performed in aquatic systems receiving point source pollution from wastewater treatment plants in order to assess the accumulation of silver nanoparticles. If necessary, measures should be implemented to mitigate the entry of silver nanoparticles, especially into more vulnerable environments

    Strategies for Controlling Filamentous Bulking in Activated Sludge Wastewater Treatment Plants: The Old and the New

    No full text
    Filamentous bulking and foaming are the most common settling problems experienced in activated sludge (AS) wastewater treatment plants (WWTPs). The quality of the final effluent is poor during episodes of bulking and foaming, which is an environmental, human health and economic burden. Remedial measures are often ineffective, and traditional non-specific methods such as chlorination may also negatively impact important functional bacterial species such as nitrifiers. Modifications to older methods as well as new strategies are required for controlling filamentous bulking. Laboratory testing needs to be followed by testing at scale in WWTPs. This review describes the filamentous bacteria responsible for filamentous bulking, with a focus on their global distribution and known factors which are selective for the growth of specific filaments. Traditional and new non-specific and biological control strategies are reviewed and discussed. Research gaps are identified with the aim of promoting continued efforts to establish effective control strategies for filamentous sludge bulking

    Strategies for Controlling Filamentous Bulking in Activated Sludge Wastewater Treatment Plants: The Old and the New

    No full text
    Filamentous bulking and foaming are the most common settling problems experienced in activated sludge (AS) wastewater treatment plants (WWTPs). The quality of the final effluent is poor during episodes of bulking and foaming, which is an environmental, human health and economic burden. Remedial measures are often ineffective, and traditional non-specific methods such as chlorination may also negatively impact important functional bacterial species such as nitrifiers. Modifications to older methods as well as new strategies are required for controlling filamentous bulking. Laboratory testing needs to be followed by testing at scale in WWTPs. This review describes the filamentous bacteria responsible for filamentous bulking, with a focus on their global distribution and known factors which are selective for the growth of specific filaments. Traditional and new non-specific and biological control strategies are reviewed and discussed. Research gaps are identified with the aim of promoting continued efforts to establish effective control strategies for filamentous sludge bulking

    Functional Microbial Communities in Hybrid Linear Flow Channel Reactors for Desulfurization of Tannery Effluent

    No full text
    Recent research has demonstrated that hybrid linear flow channel reactors (HLFCRs) can desulfurize tannery effluent via sulfate reduction and concurrent oxidation of sulfide to elemental sulfur. The reactors can be used to pre-treat tannery effluent to improve the efficiency of downstream anaerobic digestion and recover sulfur. This study was conducted to gain insight into the bacterial communities in HLFCRs operated in series and identify structure-function relationships. This was accomplished by interpreting the results obtained from amplicon sequencing of the 16S rRNA gene and quantification of the dissimilatory sulfite reducing (dsrB) gene. In an effort to provide a suitable inoculum, microbial consortia were harvested from saline estuaries and enriched. However, it was found that bioaugmentation was not necessary because native communities from tannery wastewater were selected over exogenous communities from the enriched consortia. Overall, Dethiosulfovibrio sp. and Petrimonas sp. were strongly selected (maximum relative abundances of 29% and 26%, respectively), while Desulfobacterium autotrophicum (57%), and Desulfobacter halotolerans (27%) dominated the sulfate reducing bacteria. The presence of elemental sulfur reducing genera such as Dethiosulfovibrio and Petrimonas is not desirable in HLFCRs, and strategies to counter their selection need to be considered to ensure efficiency of these systems for pre-treatment of tannery effluent

    Heterogeneous Nanomagnetic Catalyst from Cupriferous Mineral Processing Gangue for the Production of Biodiesel

    No full text
    The commercialisation of biodiesel as an alternative energy source is challenged by high production costs. The cost of feedstock, catalyst and separation of the dissolved catalyst (homogeneous catalyst) from the product are the major contributors to the total manufacturing cost of biodiesel. This study investigated the potential of a heterogeneous catalyst produced from mineral processing waste for biodiesel production. Tailings from the concentration of cupriferous minerals served as the starting material for synthesis of the catalyst. The nanomagnetic catalysts were prepared using co-precipitation (CMCO) and sol-gel (CMSG) methods, combined with zero-valent iron nanoparticles (ZVINPs) to form a hydride catalyst (CMSG/ZVINPs). Catalyst properties were assessed using SEM, TEM, BET and EDX. The catalyst activity was enhanced by a large number of basic sites that were afforded by the presence of calcite and magnesite. Good surface areas and particle sizes of 58.9 m2/g and 15.4 nm, and 52.6 m2/g and 16.9 nm were observed for the catalysts that were prepared using the CMSG and CMCO methods, respectively. 173 emu/g mass magnetisation was obtained for CMSG/ZVINPs, which was sufficient for the catalyst to be regenerated and reused for biodiesel production by exploiting the magnetic properties. The maximum yield obtained with this catalyst was 88% and an average of 27% decrease in biodiesel yield was observed after four reaction cycles. The physicochemical properties of the biodiesel produced complied with the ASTM standard specification. The results showed that mineral processing tailings are a viable starting material for catalyst preparation in biodiesel production

    Bacterial nitrogen fixation in sand bioreactors treating winery wastewater with a high carbon to nitrogen ratio

    Get PDF
    Heterotrophic bacteria proliferate in organic-rich environments and systems containing sufficient essential nutrients. Nitrogen, phosphorus and potassium are the nutrients required in the highest concentrations. The ratio of carbon to nitrogen is an important consideration for wastewater bioremediation because insufficient nitrogen may result in decreased treatment efficiency. It has been shown that during the treatment of effluent from the pulp and paper industry, bacterial nitrogen fixation can supplement the nitrogen requirements of suspended growth systems. This study was conducted using physicochemical analyses and culture-dependent and -independent techniques to ascertain whether nitrogen-fixing bacteria were selected in biological sand filters used to treat synthetic winery wastewater with a high carbon to nitrogen ratio (193:1). The systems performed well, with the influent COD of 1351 mg/L being reduced by 84–89%. It was shown that the nitrogen fixing bacterial population was influenced by the presence of synthetic winery effluent in the surface layers of the biological sand filters, but not in the deeper layers. It was hypothesised that this was due to the greater availability of atmospheric nitrogen at the surface. The numbers of culture-able nitrogen-fixing bacteria, including presumptive Azotobacter spp. exhibited 1–2 log increases at the surface. The results of this study confirm that nitrogen fixation is an important mechanism to be considered during treatment of high carbon to nitrogen wastewater. If biological treatment systems can be operated to stimulate this phenomenon, it may obviate the need for nitrogen addition
    corecore