5 research outputs found

    Guidance from an NIH Workshop on Designing, Implementing, and Reporting Clinical Studies of Soy Interventions1–4

    Get PDF
    The NIH sponsored a scientific workshop, “Soy Protein/Isoflavone Research: Challenges in Designing and Evaluating Intervention Studies,” July 28–29, 2009. The workshop goal was to provide guidance for the next generation of soy protein/isoflavone human research. Session topics included population exposure to soy; the variability of the human response to soy; product composition; methods, tools, and resources available to estimate exposure and protocol adherence; and analytical methods to assess soy in foods and supplements and analytes in biologic fluids and other tissues. The intent of the workshop was to address the quality of soy studies, not the efficacy or safety of soy. Prior NIH workshops and an evidence-based review questioned the quality of data from human soy studies. If clinical studies are pursued, investigators need to ensure that the experimental designs are optimal and the studies properly executed. The workshop participants identified methodological issues that may confound study results and interpretation. Scientifically sound and useful options for dealing with these issues were discussed. The resulting guidance is presented in this document with a brief rationale. The guidance is specific to soy clinical research and does not address nonsoy-related factors that should also be considered in designing and reporting clinical studies. This guidance may be used by investigators, journal editors, study sponsors, and protocol reviewers for a variety of purposes, including designing and implementing trials, reporting results, and interpreting published epidemiological and clinical studies

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Dietary Reference Intakes for vitamin D: justification for a review of the 1997 values123

    No full text
    Recent Institute of Medicine (IOM) reviews of the process for deriving Dietary Reference Intakes (DRIs) suggest that determining the need for a new nutrient review should be evaluated against criteria set a priori. After selecting the criterion of significant new and relevant research, a working group of US and Canadian government scientists used results from a systematic review and 2 conferences on vitamin D and health to evaluate whether significant new and relevant scientific evidence had become available since the 1997 IOM publication of the DRIs for vitamin D. This working group concluded that there appears to be new research meeting the criteria for 4 key DRI questions. The new research is of larger quantity and quality for the elderly than for other groups, but overall 1) adds to the bone-related and status evidence available to the 1997 DRI Committee for several of the life-stage groups, 2) identifies new outcomes with respect to risk of falls and performance measures in the elderly and potential adverse effects, and 3) provides additional information on dose-response relations between intakes and circulating 25-hydroxyvitamin D concentrations and between 25-hydroxyvitamin D concentrations and several health outcomes (ie, bone-related outcomes for all ages and risk of falls and performance measures in older adults). Members of the working group concluded that significant new and relevant research was available for reviewing the existing DRIs for vitamin D while leaving the decision of whether the new research will result in changes to the current DRIs to a future IOM-convened DRI committee

    Nanotechnology Research: Applications in Nutritional Sciences12

    No full text
    The tantalizing potential of nanotechnology is to fabricate and combine nanoscale approaches and building blocks to make useful tools and, ultimately, interventions for medical science, including nutritional science, at the scale of ∌1–100 nm. In the past few years, tools and techniques that facilitate studies and interventions in the nanoscale range have become widely available and have drawn widespread attention. Recently, investigators in the food and nutrition sciences have been applying the tools of nanotechnology in their research. The Experimental Biology 2009 symposium entitled “Nanotechnology Research: Applications in Nutritional Sciences” was organized to highlight emerging applications of nanotechnology to the food and nutrition sciences, as well as to suggest ways for further integration of these emerging technologies into nutrition research. Speakers focused on topics that included the problems and possibilities of introducing nanoparticles in clinical or nutrition settings, nanotechnology applications for increasing bioavailability of bioactive food components in new food products, nanotechnology opportunities in food science, as well as emerging safety and regulatory issues in this area, and the basic research applications such as the use of quantum dots to visualize cellular processes and protein-protein interactions. The session highlighted several emerging areas of potential utility in nutrition research. Nutrition scientists are encouraged to leverage ongoing efforts in nanomedicine through collaborations. These efforts could facilitate exploration of previously inaccessible cellular compartments and intracellular pathways and thus uncover strategies for new prevention and therapeutic modalities

    The NIH Human Microbiome Project

    No full text
    The Human Microbiome Project (HMP), funded as an initiative of the NIH Roadmap for Biomedical Research (http://nihroadmap.nih.gov), is a multi-component community resource. The goals of the HMP are: (1) to take advantage of new, high-throughput technologies to characterize the human microbiome more fully by studying samples from multiple body sites from each of at least 250 “normal” volunteers; (2) to determine whether there are associations between changes in the microbiome and health/disease by studying several different medical conditions; and (3) to provide both a standardized data resource and new technological approaches to enable such studies to be undertaken broadly in the scientific community. The ethical, legal, and social implications of such research are being systematically studied as well. The ultimate objective of the HMP is to demonstrate that there are opportunities to improve human health through monitoring or manipulation of the human microbiome. The history and implementation of this new program are described here
    corecore