15 research outputs found

    Interbull new services: Current and Future

    Get PDF
    Interbull Centre has been closely working with several working groups on different topics spacing from the improvement of the MACE model to a revision of validation methods due to genomic pre-selection to expansion of the MACE and Interbeef portfolio to new traits. The activity of such working groups has progressed so nicely that theoutcome of their research has been either recently implemented or it is aimed for an implementation in the near future (within one year’s time). The present articleaimed at providing the reader with an overall view of suchactivities and the related new services they have, or are going to, generate

    Non-additive genetic effects for fertility traits in Canadian Holstein cattle (Open Access publication )

    Get PDF
    The effects of additive, dominance, additive by dominance, additive by additive and dominance by dominance genetic effects on age at first service, non-return rates and interval from calving to first service were estimated. Practical considerations of computing additive and dominance relationships using the genomic relationship matrix are discussed. The final strategy utilized several groups of 1000 animals (heifers or cows) in which all animals had a non-zero dominance relationship with at least one other animal in the group. Direct inversion of relationship matrices was possible within the 1000 animal subsets. Estimates of variances were obtained using Bayesian methodology via Gibbs sampling. Estimated non-additive genetic variances were generally as large as or larger than the additive genetic variance in most cases, except for non-return rates and interval from calving to first service for cows. Non-additive genetic effects appear to be of sizeable magnitude for fertility traits and should be included in models intended for estimating additive genetic merit. However, computing additive and dominance relationships for all possible pairs of individuals is very time consuming in populations of more than 200 000 animals

    Inbreeding and pedigree analysis of the European red dairy cattle

    Get PDF
    Background Red dairy cattle breeds have an important role in the European dairy sector because of their functional characteristics and good health. Extensive pedigree information is available for these breeds and provides a unique opportunity to examine their population structure, such as effective population size, depth of the pedigree, and effective number of founders and ancestors, and inbreeding levels. Animals with the highest genetic contributions were identified. Pedigree data included 9,073,403 animals that were born between 1900 and 2019 from Denmark, Finland, Germany, Latvia, Lithuania, the Netherlands, Norway, Poland, and Sweden, and covered 32 breeds. The numerically largest breeds were Red Dairy Cattle and Meuse-Rhine-Yssel. Results The deepest average complete generation equivalent (9.39) was found for Red Dairy Cattle in 2017. Mean pedigree completeness ranged from 0.6 for Finncattle to 7.51 for Red Dairy Cattle. An effective population size of 166 animals was estimated for the total pedigree and ranged from 35 (Rotes Hohenvieh) to 226 (Red Dairy Cattle). Average generation intervals were between 5 and 7 years. The mean inbreeding coefficient for animals born between 1960 and 2018 was 1.5%, with the highest inbreeding coefficients observed for Traditional Angler (4.2%) and Rotes Hohenvieh (4.1%). The most influential animal was a Dutch Meuse-Rhine-Yssel bull born in 1960. The mean inbreeding level for animals born between 2016 and 2018 was 2% and highest for the Meuse-Rhine-Yssel (4.64%) and Rotes Hohenvieh breeds (3.80%). Conclusions We provide the first detailed analysis of the genetic diversity and inbreeding levels of the European red dairy cattle breeds. Rotes Hohenvieh and Traditional Angler have high inbreeding levels and are either close to or below the minimal recommended effective population size, thus it is necessary to implement tools to monitor the selection process in order to control inbreeding in these breeds. Red Dairy Cattle, Vorderwalder, Swedish Polled and Hinterwalder hold more genetic diversity. Regarding the Meuse-Rhine-Yssel breed, given its decreased population size, increased inbreeding and low effective population size, we recommend implementation of a breeding program to prevent further loss in its genetic diversity

    State of the art of 18F-FDG PET/CT application in inflammation and infection: a guide for image acquisition and interpretation

    Get PDF
    Aim The diagnosis, severity and extent of a sterile inflammation or a septic infection could be challenging since there is not one single test able to achieve an accurate diagnosis. The clinical use of 18F-fluorodeoxyglucose ([F-18]FDG) positron emission tomography/computed tomography (PET/CT) imaging in the assessment of inflammation and infection is increasing worldwide. The purpose of this paper is to achieve an Italian consensus document on [F-18]FDG PET/CT or PET/MRI in inflammatory and infectious diseases, such as osteomyelitis (OM), prosthetic joint infections (PJI), infective endocarditis (IE), prosthetic valve endocarditis (PVE), cardiac implantable electronic device infections (CIEDI), systemic and cardiac sarcoidosis (SS/CS), diabetic foot (DF), fungal infections (FI), tuberculosis (TBC), fever and inflammation of unknown origin (FUO/IUO), pediatric infections (PI), inflammatory bowel diseases (IBD), spine infections (SI), vascular graft infections (VGI), large vessel vasculitis (LVV), retroperitoneal fibrosis (RF) and COVID-19 infections. Methods In September 2020, the inflammatory and infectious diseases focus group (IIFG) of the Italian Association of Nuclear Medicine (AIMN) proposed to realize a procedural paper about the clinical applications of [F-18]FDG PET/CT or PET/MRI in inflammatory and infectious diseases. The project was carried out thanks to the collaboration of 13 Italian nuclear medicine centers, with a consolidate experience in this field. With the endorsement of AIMN, IIFG contacted each center, and the pediatric diseases focus group (PDFC). IIFG provided for each team involved, a draft with essential information regarding the execution of [F-18]FDG PET/CT or PET/MRI scan (i.e., indications, patient preparation, standard or specific acquisition modalities, interpretation criteria, reporting methods, pitfalls and artifacts), by limiting the literature research to the last 20 years. Moreover, some clinical cases were required from each center, to underline the teaching points. Time for the collection of each report was from October to December 2020. Results Overall, we summarized 291 scientific papers and guidelines published between 1998 and 2021. Papers were divided in several sub-topics and summarized in the following paragraphs: clinical indications, image interpretation criteria, future perspectivess and new trends (for each single disease), while patient preparation, image acquisition, possible pitfalls and reporting modalities were described afterwards. Moreover, a specific section was dedicated to pediatric and PET/MRI indications. A collection of images was described for each indication. Conclusions Currently, [F-18]FDG PET/CT in oncology is globally accepted and standardized in main diagnostic algorithms for neoplasms. In recent years, the ever-closer collaboration among different European associations has tried to overcome the absence of a standardization also in the field of inflammation and infections. The collaboration of several nuclear medicine centers with a long experience in this field, as well as among different AIMN focus groups represents a further attempt in this direction. We hope that this document will be the basis for a "common nuclear physicians' language" throughout all the country

    Non-additive genetic effects for fertility traits in Canadian Holstein cattle (Open Access publication)

    No full text
    The effects of additive, dominance, additive by dominance, additive by additive and dominance by dominance genetic effects on age at first service, non-return rates and interval from calving to first service were estimated. Practical considerations of computing additive and dominance relationships using the genomic relationship matrix are discussed. The final strategy utilized several groups of 1000 animals (heifers or cows) in which all animals had a non-zero dominance relationship with at least one other animal in the group. Direct inversion of relationship matrices was possible within the 1000 animal subsets. Estimates of variances were obtained using Bayesian methodology via Gibbs sampling. Estimated non-additive genetic variances were generally as large as or larger than the additive genetic variance in most cases, except for non-return rates and interval from calving to first service for cows. Non-additive genetic effects appear to be of sizeable magnitude for fertility traits and should be included in models intended for estimating additive genetic merit. However, computing additive and dominance relationships for all possible pairs of individuals is very time consuming in populations of more than 200 000 animals

    First description of agonist and antagonist IP-10 in urine of patients with active TB

    Get PDF
    Objectives: Biomarkers for tuberculosis (TB) diagnosis and clinical management are needed to defeat TB. In chronic hepatitis, patients not responding to interferon/ribavirin treatment had high levels of an antagonist form of IP-10. Recently, antagonist IP-10 has been shown to be involved also in TB pathogenesis. Here, we investigated IP-10 agonist/antagonist forms as potential inflammatory biomarkers to support TB diagnosis and monitoring. Methods: Total IP-10 and its agonist/antagonist forms were measured by SIMOA digital ELISA in urine obtained from patients with active TB at baseline and after treatment. Healthy donors (HD) and patients with pneumonia were enrolled as controls. Results: Patients with active TB had significantly higher levels of total and agonist IP-10 at baseline compared to HD; conversely, no differences were observed between IP-10 levels in active TB vs pneumonia. Moreover, in active TB a decline of total urine IP-10 was observed at therapy completion; agonist/antagonist forms reflected this decline although their differences were not statistically significant. Conclusions: We showed for the first time that agonist/antagonist IP-10 forms are measurable in urine. IP-10 levels associate with TB and pneumonia disease, suggesting their association with acute inflammation. Further studies are needed to assess their role to monitor TB treatment efficacy. Keywords: Tuberculosis, Biomarker, IP-10 antagonism, Urine, Treatment monitorin

    Graphene–Curcumin Coatings Resistant to SARS-CoV-2 and Mycobacteria for the Production of Personal Protective Equipment

    No full text
    Respiratory tract infections represent the main cause of death from infectious diseases worldwide. SARS-CoV-2 infection (i.e. COVID-19) added to the existing global burden of respiratory tract infections, including tuberculosis. Among nanomaterials for fabric functionalization, graphene, in combination with hydrophobic molecules such as phytochemicals, represents a promising low-cost alternative to antibiotics. In this work, we used graphene and curcumin to create fabric coatings on cotton and polyester for the production of personal protective equipment resistant to infective agents. These coatings ensure the trapping of microorganisms via interaction with SARS-CoV-2 or mycobacteria surface and inhibit microbial infections

    PE_PGRS3 of Mycobacterium tuberculosis is specifically expressed at low phosphate concentration and its arginine-rich C-terminal domain mediates adhesion and persistence in host tissues when expressed in Mycobacterium smegmatis

    Get PDF
    PE_PGRSs of Mycobacterium tuberculosis (Mtb) represent a family of complex and peculiar proteins whose role and function remain elusive. In this study, we investigated PE_PGRS3 and PE_PGRS4, two highly homologous PE_PGRSs encoded by two contiguous genes in the Mtb genome. Using a gene-reporter system in Mycobacterium smegmatis (Ms) and transcriptional analysis in Mtb, we show that PE_PGRS3, but not PE_PGRS4, is specifically expressed under low phosphate concentrations. Interestingly, PE_PGRS3, but not PE_PGRS4, has a unique, arginine-rich C-terminal domain of unknown function. Heterologous expression of PE_PGRS3 in Ms was used to demonstrate cellular localization of the protein on the mycobacterial surface, where it significantly affects net surface charge. Moreover, expression of full-length PE_PGRS3 enhanced adhesion of Ms to murine macrophages and human epithelial cells and improved bacterial persistence in spleen tissue following infection in mice. Expression of the PE_PGRS3 functional deletion mutant lacking the C-terminal domain in Ms did not enhance adhesion to host cells, showing a phenotype similar to the Ms parental strain. Interestingly, enhanced persistence of Ms expressing PE_PGRS3 did not correlate with increased concentrations of inflammatory cytokines. These results point to a critical role for the 48 80 amino acids long, arginine-rich C-terminal domain of PE_PGRS3 in tuberculosis pathogenesis

    Immunofluorescence using anti-HA antibodies.

    No full text
    <p><i>Mtb</i>-PE_PGRS30<sup>HA</sup> (A) and <i>Mtb</i>-<sub>30</sub>PE_CT<sup>HA</sup> (B) were subjected to immunofluorescence using anti-HA antibodies. Confocal images were acquired with a 63× oil immersion objective and localization was evaluated with ImageJ software using overlap between red channel (left panel) and transmission images.</p

    Scheme showing the constructs expressing PE_PGRS30 used in this study.

    No full text
    <p>Schematic representation of native full length PE_PGRS30 gene with the indication of the different protein domains (A). List of constructs generated in pMV206 and expressing the PE_PGRS30 functional chimeras, tagged with green fluorescent protein (B). The constructs were transformed in <i>Mtb</i> H37Rv, <i>M. smegmatis</i> and <i>M. bovis</i> BCG.</p
    corecore