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Abstract
Aim The diagnosis, severity and extent of a sterile inflammation or a septic infection could be challenging since there is 
not one single test able to achieve an accurate diagnosis. The clinical use of 18F-fluorodeoxyglucose  ([18F]FDG) positron 
emission tomography/computed tomography (PET/CT) imaging in the assessment of inflammation and infection is increas-
ing worldwide. The purpose of this paper is to achieve an Italian consensus document on  [18F]FDG PET/CT or PET/MRI 
in inflammatory and infectious diseases, such as osteomyelitis (OM), prosthetic joint infections (PJI), infective endocarditis 
(IE), prosthetic valve endocarditis (PVE), cardiac implantable electronic device infections (CIEDI), systemic and cardiac 
sarcoidosis (SS/CS), diabetic foot (DF), fungal infections (FI), tuberculosis (TBC), fever and inflammation of unknown origin 
(FUO/IUO), pediatric infections (PI), inflammatory bowel diseases (IBD), spine infections (SI), vascular graft infections 
(VGI), large vessel vasculitis (LVV), retroperitoneal fibrosis (RF) and COVID-19 infections.
Methods In September 2020, the inflammatory and infectious diseases focus group (IIFG) of the Italian Association of 
Nuclear Medicine (AIMN) proposed to realize a procedural paper about the clinical applications of  [18F]FDG PET/CT or 
PET/MRI in inflammatory and infectious diseases. The project was carried out thanks to the collaboration of 13 Italian 
nuclear medicine centers, with a consolidate experience in this field. With the endorsement of AIMN, IIFG contacted each 
center, and the pediatric diseases focus group (PDFC). IIFG provided for each team involved, a draft with essential informa-
tion regarding the execution of  [18F]FDG PET/CT or PET/MRI scan (i.e., indications, patient preparation, standard or specific 
acquisition modalities, interpretation criteria, reporting methods, pitfalls and artifacts), by limiting the literature research to 
the last 20 years. Moreover, some clinical cases were required from each center, to underline the teaching points. Time for 
the collection of each report was from October to December 2020.
Results Overall, we summarized 291 scientific papers and guidelines published between 1998 and 2021. Papers were divided 
in several sub-topics and summarized in the following paragraphs: clinical indications, image interpretation criteria, future 
perspectivess and new trends (for each single disease), while patient preparation, image acquisition, possible pitfalls and 
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reporting modalities were described afterwards. Moreover, a specific section was dedicated to pediatric and PET/MRI indi-
cations. A collection of images was described for each indication.
Conclusions Currently,  [18F]FDG PET/CT in oncology is globally accepted and standardized in main diagnostic algorithms 
for neoplasms. In recent years, the ever-closer collaboration among different European associations has tried to overcome the 
absence of a standardization also in the field of inflammation and infections. The collaboration of several nuclear medicine 
centers with a long experience in this field, as well as among different AIMN focus groups represents a further attempt in 
this direction. We hope that this document will be the basis for a “common nuclear physicians’ language” throughout all 
the country.

Keywords PET · FDG · Imaging · Infection · Inflammation

Introduction

Since the initial clinical use of  [18F]FDG, nuclear medicine 
physicians and clinicians, have understood the potentiality 
of this radiopharmaceutical for imaging sterile inflammatory 
processes and also septic inflammation (infection). Indeed, 
foci of sterile or septic inflammation were, initially, con-
sidered as pitfalls of PET/CT scans and a source of false 
positivity in oncological patients. With increasing experi-
ence and expansion of the application’s fields of PET/CT, 
it became clear that  [18F]FDG could have been successfully 
used to study patients with inflammatory diseases. For sure, 
the first clinical application, in this regard, was fever of 
unknown origin (FUO) since  [18F]FDG PET/CT was able 
to change the clinical management of patients in a high per-
centage of cases.

In the last 2 decades, more clinical applications have been 
investigated with excellent results in some pathologies, such 
as large vessel vasculitis (LVV), systemic and cardiac sar-
coidosis (SS/CS), spine infections (SI), but with less prom-
ising results in other pathologies, such as prosthetic joint 
infections (PJI).

Clinical studies continue to be performed and published 
and, in particular, studies with appropriate reference stand-
ard, or multicenter studies, or head-to-head comparisons 
between different diagnostic techniques, will continue to 
improve our knowledge and correct use of  [18F]FDG PET 
in inflammatory diseases.

The Italian Association of Nuclear Medicine (AIMN) 
created, almost 20 years ago, a study group to investigate 
the role of nuclear medicine imaging in sterile and septic 
inflammatory processes.

Regarding  [18F]FDG PET for the imaging of sterile and 
septic inflammatory processes, there many different imaging 
protocols and interpretation criteria have been published, 
thus making it difficult, in some cases, to reliably use [1].

Therefore, in the last 2 years, the main purposes of the 
AIMN study group focussed on infection and inflammation, 
have been to (1) carefully study all protocols proposed in 
the literature, and (2) summarize and analyse them, with 
the final goal of providing practical indications for nuclear 

medicine physicians about how to use  [18F]FDG PET appro-
priately and how to correctly interpret images in different 
inflammatory diseases.

Materials and methods

To accomplish the goal of this extensive literature search, 
we analysed all published papers in the last 20 years deal-
ing with  [18F]FDG PET/CT or PET/magnetic resonance 
imaging (MRI) in inflammation or infection. Amongst all 
papers retrieved, we selected the most relevant, based on our 
experience and on the methodology used in the manuscripts. 
Papers were divided in several sub-topics, each one char-
acterized by the following paragraphs: clinical indications, 
image interpretation criteria, future perspectives and new 
trends (for each single disease), while patient preparation, 
image acquisition, possible pitfalls and reporting modalities 
were described afterwards.

Overall, we summarized 291 scientific papers and guide-
lines published between 1998 and 2021.

When a national or European guideline or a consensus 
paper was available, we mainly referred to it [1–21].

Results

From all 291 retrieved studies, clinical indications and the 
image interpretation criteria for SIs, diabetic foot infections 
(DFI), osteomyelitis (OM), LVV, vascular graft infections 
(VGI), infectious endocarditis (IE), cardiovascular implant-
able electronic device (CIEDs) infections, left ventricular 
assist device associated (LVADs) infections, CS, retroperi-
toneal fibrosis (RF), FUO, SS, tuberculosis (TBC), invasive 
fungal infections (IFI), HIV-infection, SARS-CoV-2 infec-
tion and inflammatory bowel diseases (IBD), were carefully 
reported.

Then, we summarized the results of recent applications of 
PET/MRI and in pediatric patients in this setting of disease.
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Finally, a practical guide for patient preparation, image 
acquisition protocol, possible pitfalls and how to prepare the 
medical report, has also been reported.

Role of 18F‑FDG PET/CT in spine infections

SI can involve vertebral bone (spondylitis), intervertebral 
disc (discitis) or both vertebral bodies and corresponding 
intervertebral disc with frequent extension to the contiguous 
soft tissues (spondylodiscitis) [2]. SI has been classified as 
primary or secondary according to the modality of infection. 
Primary SI has a hematogenous origin while secondary SI 
is due to direct contamination, in most cases after surgi-
cal procedures. SI incidence has progressively increased 
in the last years. Men, aged between 50 and 70 years, are 
more affected than women [2, 3]. The most frequent pre-
disposing factors are endocarditis, diabetes mellitus, septic 
arthritis, urinary tract infections, immunodeficiency, long-
term steroid use, malignancy and spinal surgery [2, 3]. The 
most common etiological agents of SI are pyogenic bacteria, 
such as Staphylococcus aureus, followed by Streptococci; 
less frequently, it can be caused by non-pyogenic agents 
such as Mycobacterium Tuberculosis, fungi and parasites 
[2]. The most frequent region involved is the lumbar spine, 
followed by dorsal and cervical regions [3]. The diagnosis 
of SI is based on clinical signs (focal back pain, fever and/
or neurological deficit), laboratory tests (elevated inflamma-
tion indexes, positive blood culture) and imaging findings 
[2, 3]. The mean time for the diagnosis of SI is still too long 
and the rate of complications increases with a delayed diag-
nosis. An early diagnosis is required to prevent irreversible 
complications. Diagnostic imaging is necessary to confirm 
the clinical suspicious of SI. MRI acquired with STIR or fat-
saturated T2-weighted sequences and T1-weighted SE fat-
suppressed pre- and post i.v. injection of contrast media, is 
considered the most accurate technique for the diagnosis of 
primary SI [2, 4]. However, some studies show similar diag-
nostic accuracy of MRI and  [18F]FDG PET/CT in primary SI 
underlining the importance of the complementarity of both 
diagnostic procedures [5, 6]. MRI can be replaced by  [18F]
FDG PET/CT in patients with contraindications to MRI and 
in case of MRI inconclusive report [2, 3].  [18F]FDG PET/CT 
should be performed in patients with suspected secondary 
SI, since the presence of post-surgical reactive tissue does 
not affect the outcome of the diagnostic procedure. Finally, 
 [18F]FDG PET/CT should be performed for the evaluation 
of treatment response [2, 3, 7, 8] having preferably acquired 
a basal scan before the start of treatment. Moreover, it is 
important to know that MRI showed highest sensitivity in 
diagnosing epidural and spinal abscesses while  [18F]FDG 
PET/CT was more sensitive in diagnosing paravertebral and 
psoas abscesses [5]. In primary and mostly in secondary 
SI, the nuclear medicine technique seems to show superior 

diagnostic value in the early course of disease (< 15 days) 
[5]. Last but not least,  [18F]FDG PET/CT allows to study 
the total-body of patient, identifying other potential foci of 
infection [9]. The specificity of  [18F]FDG PET/CT remains 
the crucial issue since it is not able to differentiate infection 
from marked degenerative disease or malignancy, for this 
reason, we must always evaluate the entire medical history 
of the patient.

Clinical indications

– Diagnosis of suspected SI in patients with elevated 
C-reactive protein (CRP) and/or erythrocyte sedimenta-
tion rate (ESR);

– Diagnosis of suspected primary SI;
– Diagnosis of secondary SI (at least 4 months after sur-

gery) [5];
– Suspected recurrence of disease in patients with previous 

SI;
– Assessment of the extent of the SI and identification of 

complications (i.e., paravertebral, psoas abscess);
– Evaluation of antibiotic therapy response in primary and 

secondary SI.

Interpretation criteria

Qualitative analysis:  [18F]FDG PET/CT is considered 
negative for SI if  [18F]FDG uptake of the suspected site is 
smooth and homogeneous with similar intensity of adjacent 
vertebrae and surrounding soft tissue [3].  [18F]FDG PET/
CT is considered positive for SI if  [18F]FDG uptake of the 
suspected site is higher than the adjacent vertebrae and sur-
rounding soft tissue [3].

A useful score for the qualitative interpretation of PET 
images has been proposed by Hungenbach et al.:

– Score 0: Normal findings and physiological  [18F]FDG 
distribution (no infection);

– Score 1: slightly increased uptake in the inter- or para-
vertebral region (no infection);

– Score 2: clearly increased uptake of a linear or disciform 
pattern in the intervertebral space (discitis);

– Score 3: clearly increased uptake of a linear or disciform 
pattern in the intervertebral space and involvement of 
ground or cover plate or both plates of the adjacent ver-
tebrae (spondylodiscitis);

– Score 4: clearly increased uptake of a linear or disciform 
pattern in the intervertebral space and involvement of 
ground or cover plate or both plates of the adjacent ver-
tebrae associated with surrounding soft-tissue abscess 
(spondylodiscitis) [10].
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Quantitative analysis:  SUVmax is the most validated 
semi-quantitative parameter. No cut-off has been estab-
lished to differentiate between positive and negative find-
ings;  SUVmax > 3 seems to be compatible with SI [11]. 
Semi-quantitative analysis is also useful to evaluate the 
response to therapy; in particular, a follow-up  SUVmax 
reduction compared to basal value is considered suggestive 
of a good response to treatment. Literature reports a cut-
off of ΔSUVmax ((SUVmax before treatment −  SUVmax after 
treatment)/SUVmax before treatment) between 25 and 43% 
suggestive of metabolic response to therapy [7, 12].

In summary, SI needs to have a fast and early diagnosis 
to prevent irreversible complications. MRI is considered 
the most accurate technique for the diagnosis of primary SI 
and shows high sensitivity in diagnosing epidural and spinal 
abscesses.  [18F]FDG PET/CT can be performed in patients 
with contraindications to MRI and in case of the suspect of 
secondary SI.  [18F]FDG PET/CT is highly sensitive for the 
diagnosis of paravertebral and psoas abscesses and for the 
evaluation of treatment response, mostly in secondary SI. It 
is recommended to perform a basal PET/CT scan before or 
immediately at the beginning of antibiotic treatment.

Future perspectives and new trends

[18F]FDG PET/MRI is a multimodality imaging that can 
match the high sensitivity of  [18F]FDG PET/CT in detect-
ing metabolic alterations with the high specificity of MRI 
for spine lesions evaluation; therefore, it represents the ideal 
tool for a one-stop shop benefit. Even if only a limited num-
ber of studies of PET/MRI in patients with SI are available 
now [13].

Some experimental studies are now in progress to find 
new radiopharmaceuticals, as 68  Ga-DOTA-Biotin, to 
improve the specificity of  [18F]FDG in SI diagnosis [14].

Role of  [18F]FDG PET/CT in diabetic foot infections

It has been estimated that up to 15% of patients with long-
standing diabetes will develop foot complications such as 
ulcers and infections and more than 50% of wounds are 
infected at their presentation. The development of an infec-
tion represents a dramatic event for both patients and society, 
being associated to considerable morbidity, increased risk 
of major complications that often require foot amputation, 
and high mortality rate. Therefore, DFIs represent one of 
the most relevant health issues worldwide [15, 16]. Diabetic 
neuropathy, micro/macro angiopathy and immune system 
alterations, play a central role in the development of foot 
ulcers that may remain unrecognized by the patient and may 
be difficult to heal because of the presence of peripheral 
artery disease. Foot ulcers become the entryway of several 
pathogens thus predisposing to the development of a soft 

tissue infection (STI). If not promptly identified, the infec-
tion could reach the bone, thus causing OM that is one of the 
most disabling complications of uncontrolled diabetes. Char-
cot osteoarthropathy, with or without a superimposed infec-
tion, is another foot complication of diabetes that further 
complicates the diagnosis. Indeed, the most important diag-
nostic challenge is to differentiate between these three condi-
tions since they require very different therapeutic approaches 
[17]. In case of OM, it is also important to correctly evaluate 
the extent of the infection and of affected bones.

Although the gold standard for the diagnosis of an infec-
tion is still represented by the isolation of causative micro-
organisms, through bone biopsy or cultures from ulcers, 
these approaches are often invasive and associated to risk 
of sample contaminations [18, 19]. Therefore, imaging plays 
a crucial role in the diagnosis of infective process and for the 
evaluation of its extent, thus providing important informa-
tion to plan the most appropriate therapy. Plain X-ray film 
usually represents the first step imaging modality since it 
provides an anatomical overview of the foot and detects any 
pre-existing condition that should be known for the correct 
interpretation of second level imaging modalities. Despite 
the specificity for detecting an infection is low, MRI is the 
radiologic modality of choice for the study of DFI since it 
provides high quality images with high definition between 
soft tissues and bone, being able to achieve the diagnosis of 
infection with a good accuracy [17]. From a nuclear medi-
cine point of view, the gold standard imaging modality for 
diagnosis of infective complications of DF, still remains 
radiolabeled white blood cell (WBC) scintigraphy [20–23], 
especially if performed following EANM recommendations 
[20, 24, 25], as also demonstrated in previous meta-analysis 
[26] and by a large retrospective study comparing radiola-
beled WBC scintigraphy,  [18F]FDG PET/CT and MRI [23]. 
However, also  [18F]FDG PET/CT is gaining an interesting 
role in imaging infections and inflammation particularly in 
lesions of the forefoot [27]. Nevertheless, data in literature 
show discordant results, mainly due to the lack of univocal 
interpretation criteria for PET imaging. From the systematic 
review and meta-analysis published in 2013 by Treglia and 
colleagues, per-patient-based analysis showed a pooled sen-
sitivity of 74% and a specificity of 91% [28]. However, this 
meta-analysis included only four papers [29–32]. In another 
more recent systematic review and meta-analysis compar-
ing radiolabeled WBC scintigraphy,  [18F]FDG PET/CT and 
MRI, these three imaging modalities showed comparable 
sensitivities for the detection of DF osteomyelitis (DFO) 
whereas, both radiolabeled WBC scintigraphy and  [18F]
FDG PET/CT showed highest specificity [21]. In a recently 
published retrospective study, in 251 patients, aiming to 
compare different imaging modalities in detecting OM, 
STI and Charcot,  [18F]FDG PET/CT showed significantly 
higher specificity compared with MRI (95.7% vs 83.6% 
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respectively) in detecting STI, especially in mid/hindfoot 
and a good sensitivity, specificity and accuracy in detecting 
pedal OM, in particular in the forefoot [23].

Clinical indications

– Diagnosis of foot complications (in particular for the 
detection of forefoot infections and the evaluation of its 
extent from soft tissues to bone);

– Therapeutic monitoring and follow-up (although not 
completely addressed);

Interpretation criteria

Qualitative analysis: Definite and commonly accepted image 
interpretation criteria still do not exist for  [18F]FDG PET/
CT in DF. Image interpretation relies on personal experi-
ence and on the evaluation of co-registered CT scan. Quali-
tative assessment of the uptake, in terms of pattern (focal 
or diffused), intensity (for example, comparing the uptake 
with contra-lateral side) and the description of number of 
foci and their location, should always be the first step. In 
a large retrospective study, OM was defined in presence of 
focal or diffused uptake higher than contralateral side clearly 
involving the bone; STI was defined when focal or diffused 
uptake was detected only on soft tissue and without bone 
involvement (Fig. 1) [23]. Nevertheless, while this interpre-
tation criteria is easily adaptable to the forefoot, differential 
diagnosis between bone infection, STI and Charcot neuro-
osteoarthropathy in the mid-hindfoot is much more compli-
cated and sometimes impossible by  [18F]FDG.

In some recent published papers, the interpretation cri-
teria to discriminate between OM and Charcot have been 
described, concluding that qualitative assessment of  [18F]
FDG pattern could allow such differentiation [23, 33]. How-
ever, these criteria are not universally adopted among the 
centers, thus explaining the  [18F]FDG PET/CT heterogeneity 
in reported accuracy. Moreover, many concerns still exist 
on interpretation criteria of  [18F]FDG PET/CT performed 
during antibiotic therapy, especially when the scan has to 
be compared with a basal study for the evaluation of treat-
ment efficacy.

Semi-quantitative analysis:  SUVmax is also possible, but 
despite several authors explored its possible role, no well-
defined thresholds able to differentiate between infection and 
sterile inflammation, have yet been identified. Moreover, its 
role for follow-up and therapy assessment studies is still 
unclear.

In summary,  [18F]FDG PET/CT represents a useful and 
non-invasive imaging modality for the assessment of foot 
complications in diabetic patients but the low specificity of 
 [18F]FDG in differentiating between infection and sterile 
inflammation still represents the major drawback of this 

modality. The lack of standardized interpretation criteria 
is another important limitation; therefore, the accuracy 
of this modality in discriminating between OM, STI and 
Charcot still relies on personal experience.

Future perspectives and new trends

Aiming at developing a more specific radiopharmaceuti-
cal for PET imaging WBC have also been labelled with 
 [18F]FDG showing promising results [34]. The short half-
life of 18F, indeed, represents a major limiting factor since 
delayed and late images cannot be performed. PET/MRI is 
also demonstrating a great role in musculoskeletal infec-
tions and, in future, it will gain an important application in 
defining the different complications of DF. Hopefully, this 
modality will solve the most challenging clinical scenarios 
in DFI [35].

Fig. 1  Axial views of  [18F]FDG PET/CT images (top) and low-dose 
CT scan (bottom) of a diabetic patient with suspected osteomyelitis 
of right foot. The scan identified a focal uptake on a cutaneous/sub-
cutaneous ulcer of the soft tissues of plantar surface without bone 
involvement, thus ruling out the diagnosis of osteomyelitis
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Role of  [18F]FDG PET/CT in osteomyelitis 
and prosthetic joint infections

OM is an inflammatory process of the bone caused by an 
infecting microorganism with associated bone destruction. 
Hematogenous OM is mainly seen in pre-pubertal children 
and in elderly patients and it is due to bone seeding of bac-
teria present in the bloodstream, often deriving from other 
sites of occult infections (oro-pharingeal, gastro-intestinal, 
urinary, etc.). Secondary OMs are more common and often 
occur after bone-exposed fractures and after joint replace-
ment. Joint prosthetic replacements are increasing in the 
world and it is estimated that, by 2030, 2 million of total 
hip or total knee arthroplasties will be annually performed 
in United States. PJI occurs in 1% to 2% of primary and up 
to 4% of revision arthroplasties.

The infection typically spreads in the soft tissues with-
out respecting its boundaries, while in the bone, it spreads 
in the periosteal area or inside the medullary cavity, invad-
ing the vascular channels and, raising the intraosseous 
pressure, reducing the blood flow until causing the typical 
septic bone necrosis.

The clinical diagnosis of infection is based on clinical 
and laboratory criteria such as hyperpyrexia, neutrophilic 
granulocytosis, ESR and CRP which, although highly sen-
sitive (increased in 97% of cases) are not specific and can 
also be detected in rheumatic diseases and neoplasms and 
vice versa, can be normal in the presence of a chronic or 
only moderately active infection. The differential diagnosis 
between aseptic inflammation and infection by means of 
nuclear medicine examination, is essential, particularly in 
the presence of metal hardware or deep sites that limit 
the study with radiological techniques [36, 37].  [18F]FDG 
PET/CT is increasingly being used in the diagnosis of PJI, 
especially for hip arthroplasty. Differing from leukocyte 
scintigraphy,  [18F]FDG accumulation in infections does 
not depend on leukocyte migration but it is mainly related 
to the glycolytic activity of the cells involved in the inflam-
matory response [27]. Compared with radiolabeled WBC 
scintigraphy,  [18F]FDG PET/CT offers advantages such as 
time efficiency, increased resolution, and the use of low-
dose CT [38, 39]. Nevertheless, it has a lower diagnostic 
accuracy respect to WBC scintigraphy as previously well 
demonstrated [36, 37, 40].

The detection of peri-prosthetic inflammation using 
 [18F]FDG PET/CT had a sensitivity of 90–100% for septic 
cases and of 45–80% in cases of increased abrasion and 
aseptic foreign-body reactions. However, reliable differ-
entiation between abrasion-induced and bacterial caused 
inflammation is not possible using  [18F]FDG PET/CT. In 
patients with knee arthroplasty, only uptake at the bone/
prosthesis interface was considered as being consistent 
with infection.

In post-traumatic osteomyelitis and fracture-related infec-
tions the sensitivity of  [18F]FDG PET/CT ranges between 86 
and 94% and specificity between 76 and 100%. Recent frac-
tures and the presence of metallic hardware may decrease 
the accuracy of  [18F]FDG PET/CT [1, 41].

Clinical indications

[18F]FDG PET/CT has high sensitivity but a low specific-
ity compared with radiolabeled WBC scintigraphy and it is 
mainly indicated in chronic infections characterized by a 
prevalent population of macrophages and monocytes while 
the component of neutrophilic granulocytes is minimal. 
Therefore, the most frequent clinical indications for  [18F]
FDG PET/CT are in the diagnosis and in therapy monitor-
ing of:

– Chronic pelvic OM (including after pressure ulceration);
– Chronic OM (e.g. of long bone);
– Chronic destructive septic arthritis;
– Prosthetic joint infections, infected fracture non-unions, 

infected fracture fixation implants (healed fracture); how-
ever, until now, no well-established clinical indications 
and interpretation criteria are available.

Interpretation criteria

Qualitative analysis: different patterns (focal, linear, and 
diffused), in intensity of  [18F]FDG uptake and, in compari-
son to areas of physiological distribution have been used to 
assess positivity in bone infections. For example, the distri-
bution of the activity uptake along the bone-prosthesis inter-
face of the shaft, the decreasing of activity in a dual time 
modality of acquisition, and so on [42]. The major limitation 
of  [18F]FDG is the inability of the radiopharmaceutical to 
discriminate between malignancy, infection, and inflamma-
tion [1]. Moreover, there is still not a universal agreement 
on the validity of these criteria. Repeated PET studies after 
antibiotics treatment can be useful to confirm the diagnosis 
and assess the response to this treatment. The femoral com-
ponent is considered the most reliable indicator for peri-
prosthetic hip infection, since the accumulation around the 
head, neck, and distal tip of the prosthesis can remain for up 
to 2 years after implant [43].

In summary,  [18F]FDG PET/CT allows reliable predic-
tion of peri-prosthetic septic inflammatory tissue reactions. 
Because of the high negative predictive value of this method, 
a negative PET result in the setting of a diagnostically 
unclear situation eliminates the need for revision surgery. In 
contrast, a positive PET result gives no clear differentiation 
regarding the cause of inflammation. At the present time, the 
role of  [18F]FDG imaging in the evaluation of arthroplasty 
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infection and of post-fracture infections remains to be deter-
mined [44, 45].

Future perspectives and new trends

Several other radiopharmaceuticals showed potential rel-
evance in OM, such as  [18F]-Fluoroetiltirosine (FET), 
 [18F]-Choline,  [18F]-Fluoride and others. In some selected 
cases, PET/MRI could also be helpful by combining the sen-
sitivity of  [18F]FDG PET/CT with the specificity of MRI.

Role of  [18F]FDG PET/CT in large vessel vasculitis

Primary systemic vasculitides are classified by the diameter 
of the vessels that are predominantly involved [46–49]. The 
increasing availability and improvement of imaging tech-
niques are making a deep impact in the evaluation and fol-
low-up of patients with vasculitis, particularly for those with 
LVV [50]. LVV are vasculitides affecting large arteries more 
often than other vasculitides. Large arteries are aorta and its 
major branches. LVV include giant cell arteritis (GCA) and 
Takayasu arteritis (TAK). The histopathologic features of 
TAK and GCA are indistinguishable; both are granuloma-
tous vasculitides involving the aorta and its major branches. 
TAK and GCA occur predominantly in females and share 
many clinical and radiographic features. The age at onset is 
generally used to distinguish between the two diseases. TAK 
is a disease predominantly of younger individuals (under 
40 years) while GCA is a disease of older individuals (over 
50 years). GCA has a predilection for the branches of the 
carotid and vertebral arteries, and often involves the tem-
poral artery [49–51]. While cranial manifestations of GCA 
are well recognized, it has been increasingly appreciated that 
GCA is a systemic disease that extends beyond the superfi-
cial temporal arteries and can cause manifestations including 
large-artery stenosis or aortic involvement (aortitis, aneu-
rysm formation and dissection) [52]. Several prospective 
imaging studies in patients with newly diagnosed GCA have 
shown that a majority of patients with GCA have inflam-
mation of the aorta and its branches [50]. The usefulness 
of  [18F]FDG PET/CT in diagnosing LVV has been borne 
out by several studies. In a recent systematic review and 
meta-analysis,  [18F]FDG PET/CT had a sensitivity of 90% 
and a specificity of 98% for GCA, while it had a sensitivity 
of 87% and a specificity of 73% for TAK [53].  [18F]FDG 
PET/CT is particularly valuable in securing the diagnosis 
of LVV in patients with less typical manifestations, such as 
FUO, or when other diagnostic tests are inconclusive, e.g. 
when temporal artery biopsy is negative in GCA. The role of 
 [18F]FDG PET/CT is less well established in predicting the 
course of the disease and its complications [50].

Clinical indications

– Diagnosis of suspected LVV (evaluation of disease extent 
and disease activity) in patients with elevated CRP and/
or ESR;

– Assessment of therapy efficacy (Fig. 2);
– Exclusion of other causes of systemic symptoms;
– As a guide for biopsy (potential use);
– Surrogate endpoints in clinical trials [54].

Interpretation criteria

Qualitative analysis: visual  [18F]FDG vessel uptake is the 
grading system currently used. Meller et al. in 2003 pro-
posed a four-point grading scale, comparing large vessels 
to hepatic  [18F]FDG uptake (“0” = no uptake; “1” = uptake 
inferior to the liver; “2” = uptake similar to the liver; 
“3” = uptake superior to the liver). This approach is char-
acterized by high specificity (about 100%, but with variable 
sensitivity levels between 56 and 77%) and high inter- and 
intra-observer reproducibility (90% and 93% respectively) 
[55]. A vascular uptake degree equal to the liver (Grade 2) 
can be considered “suspect” for LVV, while a lower grade 
(Grade 1) is likely to exclude its presence. A recently pub-
lished study [56] shows that up to 45% of control patients 
without LVV can express, during visual assessment, a vas-
cular uptake of Grade 1, 14% of Grade 2, and 4% of Grade 
3. Type (i.e., linear, segmental, or focal) and intensity of the 
vessel wall  [18F]FDG uptake, also must be taken into con-
sideration: in LVV the radiopharmaceutical distribution type 
is “spread” (or initially segmental), while a “focal” type can 
easily be attributable to atherosclerotic plaques.

Semi-quantitative analysis: an important overlap of the 
 SUVmax value between normal controls and LVV patients 
and the absence of reference recognized values of normal-
ity significantly limit its use in diagnosing vasculitides [57]. 
Total vascular score (TVS) takes into consideration seven 
vascular districts (carotid arteries, subclavian, axillary, iliac, 
femoral, thoracic aorta, abdominal aorta) assigning to each 
one an uptake score (ranging from “0” to “3”) based on the 
intensity degree (maximum TVS of 21). A TVS equal and/
or superior to 6 ± 0.2 is considered highly specific for the 
presence of vasculitic disease [55, 58]. This approach is still 
debated and not yet universally accepted. Ratio of  SUVmax 
vascular and  SUVmax of a reference organ (liver, lung, vas-
cular pool) reflects the limits already indicated above, and 
at the moment, its use is suggested only for clinical research 
or in doubtful case [59].

Future perspectives and new trends

The  [18F]FDG PET/MRI is a multimodality imaging that 
combines the high sensitivity of  [18F]FDG PET/CT in 
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detecting vascular/perivascular inflammation with the high 
specificity of MRI.  [18F]FDG PET/MRI is feasible in LVV 
with visual and quantitative results highly comparable to 
PET/CT for precisely determining disease extent and disease 
activity in LVV [60].

Role of  [18F]FDG PET/CT in vascular graft infections

Despite the incidence of VGI being low, ranging from 1.5% 
to 6%, it represents an extremely severe complication of vas-
cular surgery being associated with bad prognosis and high 
mortality rate [61]. Clinical presentation may vary according 
to time elapsed from surgery, type and site of the device, 
causative pathogen and to patient-related risk factors.

A prompt and accurate diagnosis is mandatory to cor-
rectly manage this kind of infection and to avoid the risk of 
major complications [24, 62]. Nevertheless, the diagnosis 
can be really challenging.

A combination of microbiology, laboratory tests, and 
imaging is crucial [63, 64]; however, an univocal diagnos-
tic strategy and a well-defined flow-chart do not exist yet, 
thus resulting in different approaches among various centers.

Several imaging modalities are currently used for diag-
nosis and follow-up of VGI [65]. From a radiologic point 
of view, CT and computed tomography angiography (CTA) 
represent the gold standard imaging modalities for their 
ability to provide an anatomical overview of vascular tree 
and to detect suggestive signs for infection (peri-graft gas 
or fluid collection, fistulae, adjacent soft tissue abscesses). 
However, the reported sensitivity and specificity is 67% and 
63%, respectively [66] that may be even lower in low-grade 
infections [64]. MRI could be potentially used but at the 
moment its role in diagnosing VGI has not been extensively 
studied.

On the other hand, nuclear medicine offers the possibility 
to explore the underlying physiopathology of the infective 
process thus providing functional information. One of the 
main strong points of NM is the possibility to achieve an 
accurate differentiation between infection and sterile inflam-
mation by performing radiolabeled white blood cells (WBC) 
scintigraphy and following well-standardized protocols for 
images acquisitions and display and well-defined interpreta-
tion criteria [20, 67]. 18F-fluorodeoxyglucose  ([18F]FDG) 
positron emission tomography/computed tomography (PET/
CT) has also gained an important role in the field of infective 

Fig. 2  >50-year-old female with Giant Cell Arteritis (GCA). MIP (A, 
B) and axial PET/CT views before and after steroid treatment. Base-
line (A, C): pathologic tracer uptake at ascending aorta, descending 
aorta, thoracic aorta, aortic arc, anonymous artery, subclavian arter-

ies, common carotid arteries and abdominal aorta. Vascular tracer 
uptake greater than the hepatic one (grade 3 according to Meller 
reference scale). After treatment (B, D): no pathological uptake 3 
months after steroid and immunosuppressive therapy (ongoing)
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and inflammatory diseases. Nevertheless, well-standardized 
acquisition protocols and interpretation criteria still do not 
exist in the specific field of VGI [27]. From several meta-
analysis and systematic reviews emerges a high sensitivity 
but a low specificity for this modality [65, 68–70], mainly 
related to the high rate of false positives results that may be 
observed in presence of physiological post-surgical inflam-
mation due to foreign body reaction induced by synthetic 
materials [71, 72]. In one of the most recently published sys-
tematic reviews and meta-analysis, [69] the reported pooled 
sensitivity is 96%, ranging from 81% [73] and 100% [72, 
74–76], whereas the reported pool specificity is 74%, rang-
ing between 29% [77] and 92% [78]. This extreme variability 
in literature is mainly related, not only to the low specificity 
of  [18F]FDG itself in discriminating between infection and 
sterile inflammation, but also to the lack of univocal inter-
pretation criteria for  [18F]FDG PET/CT, thus underlining the 
need of a standardization.

Clinical indications

– Diagnosis of the infective process and the evaluation of 
its extent;

– Identification of possible distant sites of infective embo-
lism;

– Evaluation of therapeutic efficacy (possible) [79–81].

Interpretation criteria

Several interpretation criteria have been proposed but at the 
moment, none have been universally accepted. The presence 
of focal  [18F]FDG uptake, with dotted configuration, is a 
good diagnostic marker showing high specificity and posi-
tive predictive value [71]. Conversely, mild and homogene-
ous uptake is usually observed in non-infected graft, due 
to foreign body reaction and chronic sterile inflammation 
[82], but it could also be consistent with low-grade infection. 
The exact location of the focal uptake, its distribution and 
intensity should be recorded as well as  [18F]FDG uptake in 
regional lymph nodes. Also the evaluation of graft border 
at co-registered CT scan is an important aspect, being the 
combination of irregular borders and focal  [18F]FDG uptake, 
highly predictive of VGI [71].

Qualitative analysis: as always, the evaluation of  [18F]
FDG intensity derives from a qualitative assessment and 
some visual grading scales have been proposed [75, 83–85]. 
In grade 0,  [18F]FDG uptake is similar to the background; 
in grade I,  [18F]FDG uptake is similar to inactive muscles 
and fat (low  [18F]FDG uptake); in grade II, the uptake is 
higher than those observed in inactive muscles and fat (mod-
erate  [18F]FDG uptake); in grade III, it is lower than the 
physiological urinary uptake by the bladder (strong  [18F]
FDG uptake) and in grade IV, it is comparable with the 

physiological urinary uptake by the bladder (very strong 
 [18F]FDG uptake) [85]. Focal uptake, with an intensity 
grade > II is suspicious of VGI [84].

Semi-quantitative analysis: several authors explored the 
possible role of  SUVmax or target-to-background ratio (T/B), 
normalizing the uptake for background activity in the liver 
or blood pool (usually in the cava vein) [86]. However, no 
definitive cut-off able to discriminate between an infection 
and sterile inflammation has been identified yet.

In conclusion, the clinical use of  [18F]FDG PET/CT 
imaging in the assessment of suspected VGI has increased 
worldwide. At the moment, the evaluation of uptake pattern 
(focal vs diffused) seems to be a good diagnostic marker 
able to distinguish between VGI and sterile inflammation; 
however, several pitfalls must be considered when interpret-
ing the scan.

Future perspectives and new trends

Interesting and preliminary results can be obtained with 
 [18F]FDG-labelled autologous leukocytes. Such an approach 
can improve the sensitivity of PET imaging in this scenario, 
identifying the site and extent of the infection. However, this 
technique is not free from pitfalls and at the moment, there 
are only limited studies in this field [87, 88]. Also, in the 
era of artificial intelligence application, textural analysis has 
shown preliminary potentialities in the characterization of 
the  [18F]FDG uptake heterogeneity as a feasible and prom-
ising tool to diagnose VGI that may improve the clinical 
decision-making process [89].

Role of  [18F]FDG‑PET/CT in infectious endocarditis, 
cardiovascular implantable electronic device 
infections, left ventricular assist device associated, 
infections and cardiac sarcoidosis

In this document, we provide a standard for  [18F]FDG PET/
(diagnostic) CT imaging procedures in IE, CIED, including 
LVAD and CS, which is based on the most recent EANM, 
ESC and EHRA guideline/Procedural recommendations. 
This standard should be applied in clinical practice and 
integrated in clinical trials for optimal procedural stand-
ardization. The needs of proper hybrid equipment, dedi-
cated imaging acquisition protocols, specific expertise for 
imaging reading and imaging interpretations in this field 
are discussed, emphasizing the need of a specific reference 
framework within a Cardiovascular Multidisciplinary Team 
Approach. Cardiovascular infections are burdened by high 
morbidity and mortality. The spectra of micro-organisms 
causing cardiovascular infections are very broad and may 
involve various components of the native structure of the 
heart as well as implanted devices. Since most matrix-
embedded bacteria resist to medications and host defences, 
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the surgery represents the only chance to definitely eradi-
cate the infection, but a timely diagnosis is of paramount 
importance. However, cardiovascular infection diagnosis 
is challenging, and requires a multimodal approach and a 
multidisciplinary team. Indeed, the introduction of a team 
of specialists has radically improved the management of IE, 
CIEDs infections, including Left Ventricular Assist Device 
Associated (LVADs) Infections and several classifications, 
algorithms and flow-charts are currently applied in clinical 
practice [90].

Nuclear medicine has gained a great relevance in the 
diagnosis and follow-up of these conditions as demonstrated 
by the introduction, in 2015, of  [18F]FDG PET/CT and radi-
olabeled WBC SPECT/CT, in the diagnostic algorithm of 
IE, CIEDs and LVADs infections [90]. In general, whole 
body  [18F]FDG PET/CT, provides information not only 
about the presence of local infection and its extent, but also 
on the identification of extracardiac manifestations and por-
tal of entry (POE), thus contributing to a better prognostic 
assessment and to the selection of the most suitable medical 
strategy [91].  [18F]FDG PET/CT diagnostic performances 
can be improved when it is used together with CTA since 
it is able to identify higher number of lesions, to provide 
additional meaningful information about cardiac valves and 
to better distinguish infection limited to the pocket or leads 
from a more severe extented infection in patients with sus-
pected CIED infection [92]. Using this approach, it is pos-
sible to reduce the number of doubtful scans and to provide 
a more accurate classification of patients compared to the 
Duke criteria [93–95].

According to literature, sensitivity and specificity of 
 [18F]FDG PET/CT in prosthetic valve endocarditis (PVE) 
are 73–100% and 71–100%, respectively.  [18F]FDG PET/CT 
improved the sensitivity of the modified Duke criteria from 
52–70% to 91–97% [96] by reducing the number of possible 
prosthetic valve endocarditis (PVE) cases [94, 97–102]. In 
native valve endocarditis (NVE) diagnosis,  [18F]FDG PET/
CT has a relatively limited role due to its low sensitivity 
which is hampered by both IE pathophysiology and tech-
nical factors [103]. Nonetheless, patients with NVE may 
benefit from  [18F]FDG PET/CT since it may successfully 
identify extracardiac manifestations—mainly embolic stroke 
or septic embolization to bone, spleen or kidneys—that are 
reported in a significant proportion of patients with both 
NVE and PVE.

In patients with suspected CIED infection,  [18F]FDG 
PET/CT shows very high diagnostic accuracy in detect-
ing pocket/generator infection (sensitivity = 93%, speci-
ficity = 98%), in which mild inflammatory changes after 
device implantation usually do not extend beyond 6 weeks. 
In cases of lead-related IE,  [18F]FDG PET/CT is highly 
specific (88%) with low sensitivity (65%), because small 
vegetation(s)—often under the spatial resolution of the 

system—are characterized by low-metabolic activity 
[104–106].

In LVAD infections,  [18F]FDG PET/CT allows precise 
anatomic location and accurate extent of a suspected infec-
tion [107] being highly accurate, in particular, for the assess-
ment of overall device—infections (pooled sensitivity and 
specificity of 95% and 91%, respectively). Similar perfor-
mance has been reported for pump/pocket infections (pooled 
sensitivity and specificity of 97% and 93%, respectively), 
while when only assessing the driveline,  [18F]FDG PET/
CT pooled sensitivity and specificity increased (97% and 
99%, respectively).

The role of  [18F]FDG PET/CT for the diagnosis of ext-
racardiac sarcoidosis is supported by a large amount of lit-
erature (see also the section on systemic sarcoidosis) [40]. 
The assessment of CS has been included in international 
guidelines [40, 108] and should be recommended in all the 
cases when a patient is scanned with  [18F]FDG PET/CT for 
systemic sarcoidosis. There is no distinct pattern of  [18F]
FDG uptake that is pathognomonic for CS, though focal or 
focal on diffused uptake is suggestive of the disorder.  [18F]
FDG PET/CT sensitivity and specificity for CS have been 
reported at 89 and 78%, respectively. Using semi-quantita-
tive analysis, it is possible to reaching a sensitivity of 97.3% 
and a specificity of 83.6% for the diagnosis of CS [109].

Recently, procedural recommendations on PET/CT imag-
ing in inflammatory-, infective-, infiltrative, and innervation 
(4Is)-related cardiovascular disease have been published, 
suggesting a classification of  [18F]FDG findings to facilitate 
imaging interpretation (Tables 1 and 2) [110] .

Clinical indications

– Suspected PVE, and/or septic embolisms, spread of 
infection, and POE in both PVE and NVE;

– Suspected CIED infection and/or, extent of the disease 
burden in a proven CIED infection, and/or positive blood 
culture in a patient with CIED;

– Suspected infection of LVAD, and/or evaluation of the 
extent of infection of LVAD, and/or positive blood cul-
ture in a patient with LVAD;

– Suspicion of cardiac sarcoidosis (Fig. 3);
– Monitoring of treatment in patients with established car-

diac sarcoidosis.

Interpretation criteria for IE

Qualitative analysis:

– Location of the  [18F]FDG uptake at the valve should 
be described as intravalvular (in the leaflets), valvu-
lar (following the supporting structure of the valve) or 
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perivalvular (next to the valve). A perivalvular signal 
is in favour of infection, even if infection cannot be 
excluded in case of intravalvular or valvular  [18F]FDG 
signal. Extra-cardiac site(s) of  [18F]FDG uptake should 
be described (spleen, liver, lungs, kidneys, interverte-
bral disks).

– Pattern of the  [18F]FDG uptake at the valve should be 
described as focal or diffused and homogeneous or het-
erogeneous. Focal and heterogeneous uptake is consist-
ent with IE.

– Intensity of the  [18F]FDG uptake at the valve: the 
chance of infection increases with the intensity of the 
 [18F]FDG signal at the native valve/prosthesis.

Semi-quantitative analysis: Several indices have been 
evaluated to quantify the intensity of  [18F]FDG signal in IE. 
As for other domains,  SUVmax is the easiest parameter to 
measure  [18F]FDG uptake in the valvular region.

Interpretation criteria for CIEDs and LVADs infections

Qualitative analysis: relies on the evaluation of:

– Presence/absence of the  [18F]FDG uptake.
– Persistency on NAC images: the presence and location 

of the signal and its persistency on NAC PET images 
should be described according to the signal intensity and 

Table 1  Classification for  [18F]FDG findings suggested by the EANM Procedural recommendations for PET/CT imaging of IE and CIEDs infec-
tions

Typical findings Atypical findings

Presence of focal, heterogenous, valvular/peri-valvular  [18F]FDG uptake 
persisting on NAC images and corresponding to an area of suspected 
infection on echocardiography or CTA 

High  [18F]FDG signal in the absence of prior use of surgical adhesives
Presence of focal  [18F]FDG uptake in organs with low background uptake 

consistent with septic embolism, mycotic aneurysms, or the portal of 
entry (POE)

Diffused, homogeneous, valvular  [18F]FDG uptake that is absent on 
NAC images

Low  [18F]FDG signal

Table 2  Classification for  [18F]FDG findings suggested by the EANM Procedural recommendations for PET/CT imaging of CS Modified from 
[110]

LGE late gadolinium enhancement

[18F]FDG PET/CT finding Perfusion finding (SPECT or PET) CMR findings Final interpretation

No  [18F]FDG uptake Normal No LGE No CS (< 10%)
Diffused  [18F]FDG uptake (homo-

geneous)
Normal No LGE Uptake most likely due to suboptimal 

patient preparation
Isolated lateral wall  [18F]FDG 

uptake
Normal No LGE Uptake possibly related to a normal 

variant
No  [18F]FDG uptake Small perfusion defect One focal area of LGE (alter-

native diagnosis are most 
likely)

Possible CS (50–90%)
Focal area of  [18F]FDG uptake Normal

No  [18F]FDG uptake Multiple non-contiguous areas of 
perfusion defect

Typical LGE Probable CS (50–90%)

Focal or focal on  diffused[18F]FDG 
uptake

Resting perfusion defect

Focal area of  [18F]FDG 
uptake + extracardiac findings

Normal Typical LGE Active cardiac sarcoidosis (> 90%)

Focal on  diffused[18F]FDG uptake Perfusion defect Typical LGE Active inflammation with scar in 
the same location with either dif-
fused inflammation or suboptimal 
preparation

Focal area of  [18F]FDG uptake in 
an area of normal perfusion

Perfusion defect Typical LGE Presence of both inactive scar and 
inflammation in different segments 
of the myocardium or inactive scar 
and false-positive physiological 
 [18F]FDG uptake
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its location. A focal or linear  [18F]FDG signal located on 
or alongside a lead on CT and persisting on NAC images 
is in favour of infection. Late PET acquisitions might 
prove particularly useful in case of persistent high blood 
signal on PET images acquired at 1 h p.i.

– Location:
  In CIED infections the presence of  [18F]FDG uptake 

should be described as pertinent:

– To generator/pocket (superficial or deep).
– To the leads specifying if it involves the intravascular 

or the intra-cardiac portion of the lead(s) or both. 
 [18F]FDG uptake along pacing leads appearing as 
multiple hot spots, in particular in the same loca-
tion as mobile elements on echocardiography and in 
association with septic pulmonary emboli, is highly 
suggestive of pacing lead infection [111]. The con-
trast between  [18F]FDG signal along the pacing lead 
and residual blood signal is usually improved with 
delayed PET acquisition (3 h p.i) [112]. A focal  [18F]
FDG signal is often present at the point of entry of 
the lead into the subclavian vein that resembles a 
focal inflammation.

– To cardiac valve.
– To the pericardium.

– To other sites.
  In LVADs infections, the presence of  [18F]FDG 

uptake should be assessed separately and described 
as pertinent to the five components of the device or 
to other sites:

– Driveline exit site.
– Driveline within the subcutaneous tissues.
– Pump.
– Inflow cannula.
– Outflow cannula.
– To other sites.
– Pattern of the  [18F]FDG uptake: focal or linear.
– Intensity of  [18F]FDG uptake: moderate  [18F]

FDG uptake in relation to post-operative resid-
ual inflammation can be found up to 2 months 
after CIED implantation but is usually of lower 
intensity than in the case of infection.

Semi-quantitative analysis: semi-quantitative ratio of 
maximum activity concentration of the pocket device over 
mean count rate of lung parenchyma [111] or normaliza-
tion of  SUVmax around the CIEDs to the mean hepatic 
or blood pool activity might help in differentiating mild 

Fig. 3  A male patient with a recent history of ischaemic stroke, with 
a suspicion for cardiac sarcoidosis. A MR showed a late enhance-
ment in the septum, while B at PET images, a high and diffused FDG 
uptake was found in the anterior and lateral wall of the left ventricle. 

Moreover, in the lateral wall a focal FDG uptake was found. The pat-
tern of focal-on-diffused uptake was compatible with active sarcoido-
sis
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postoperative residual inflammation up to 2 months after 
device implantation versus infection [113].

Interpretation criteria for CS

Qualitative analysis: in addition to the parameters previ-
ously described for the other clinical indications (location of 
 [18F]FDG uptake at the left or right cameras, pattern of the 
uptake, extent and intensity especially in comparison with 
prior assessments), the classification of  [18F]FDG findings 
proposed by recent EANM guidelines, and summarized in 
Table 2, could be helpful [110].

Semi-quantitative analysis:  SUVmax on  [18F]FDG PET/
CT seems to be the only independent predictor among clini-
cal and imaging variables for diagnosing CS and for therapy 
efficacy assessment [114, 115].

Future perspectives

Although still limited in clinical practice PET/MR imaging 
could have a great potential in cardiovascular infectious and 
inflammatory diseases, in particular in CS and myocarditis 
[116]. Given the possible interaction between ferromagnetic 
material and magnetic field, IE and device infection are not 
among the major indications for PET/MR. Particular caution 
is warranted in case of MR-compatible, implanted material 
such as stents or sternal wires, as these can lead to incorrect 
attenuation maps and thus to incorrect attenuation-corrected 
PET data [117]. Several new tailored radiopharmaceuticals 
are being developed for imaging myocarditis and pericardi-
tis, where the role of  [18F]FDG PET/CT is limited, but at the 
moment are still in preclinical phases.

Role of 18F‑FDG PET/CT in retroperitoneal fibrosis

Retroperitoneal fibrosis is a rare disease characterized by the 
presence of a retroperitoneal tissue, consisting of chronic 
inflammation and marked fibrosis, which often entraps the 
ureters or other abdominal organs [118]. The idiopathic form 
of RF accounts for more than two thirds of cases, with the 
rest being secondary to other factors (neoplasms, infections, 
trauma, radiotherapy, surgery, and use of certain drugs).

The gold standard for the diagnosis of RF is still histo-
pathology with its typical inflammatory infiltrate (mono-
nuclear cells, chronic inflammation, fibroblast proliferation 
and excessive extracellular matrix) [119]. CE-CT allows a 
better delineation of periaortitis and its extension to adjacent 
structures [120]. The majority of available studies suggests 
that  [18F]FDG PET/CT could be useful in evaluating the 
disease extent and activity at the time of diagnosis [48]. An 
over-expression of glucose transporter (GLUT-1, GLUT-
3) and an increased hexokinase type II (HK-II) activity 
stimulated by cytokines or mutagens lead to an incremental 

glucose consumption, and a consequent 18F]FDG uptake, by 
inflammatory cells [121]. Idiopathic RF could be included 
under the umbrella term of chronic periaortitis, along with 
inflammatory abdominal aortic aneurysms and perianeurys-
mal retroperitoneal fibrosis [119, 121]. The availability of 
imaging techniques has provided non-invasive and reliable 
methods of diagnosis and follow-up in patients with chronic 
periaortitis [50]. In idiopathic RF, the aorta is not dilated and 
the surrounding fibro-inflammatory tissue generally entraps 
abdominal organs such as ureters; in inflammatory abdomi-
nal aortic aneurysms, the tissue develops around a dilated 
aorta, but does not cause obstructions; finally, in perianeu-
rysmal RF, the fibro-inflammatory tissue involves an inflam-
matory aneurysm and generally entraps the adjacent organs 
[121].  [18F]FDG PET/CT may be useful in diagnosing RPF. 
Vascular uptake at  [18F]FDG PET/CT was observed in the 
abdominal aorta and/or iliac artery and thoracic aorta and/
or its branches in 100 and 43% of patients with RF, respec-
tively, but none in unaffected controls [122]. With regard 
to the use of PET in following up patients with RF, PET 
findings normalized in six out of seven patients after immu-
nosuppressive therapy, whereas CT showed a residual mass 
in all patients, probably representing inactive residual tissue 
[123]. These data suggest that PET may be more specific 
than CT in defining disease activity in treated RF.

Clinical indications

– Diagnosis of suspected RF (evaluation of disease extent 
and disease activity) in patients with elevated CRP and/
or ESR [118];

– Assessment of exacerbation and progression of disease, 
highlighting new foci of inflammation not documented 
at morphological imaging [124];

– Evaluation of disease activity during/after treatment in 
patients with normal inflammatory markers and stable 
residual mass on repeated MDCT [125];

– Evaluation of correct time to proceed to ureteral stent 
removal [126];

– Discrimination between active and residual fibrotic tissue 
[27].

Interpretation criteria

Qualitative analysis: the evaluation of the metabolic activ-
ity of RF with  [18F]FDG PET/CT can be done by visual 
analysis. It is usually performed in a four-point graded scale, 
based on the tissue-to-liver  [18F]FDG uptake ratio (0: no 
uptake, 1: uptake less than that of the liver, 2: uptake equal 
to that of the liver, and 3: uptake greater than that of the 
liver); a visual score above 1 is usually considered a positive 
criterion for active RPF [27, 119].
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Semi-quantitative analysis:  SUVmax values and T/B could 
also be used. In the recent past standardization of  [18F]FDG 
PET/CT studies using semi-quantitative analysis to achieve 
interchangeability in multicentric trials was recommended 
[127].

Future perspectives and new trends

The  [18F]FDG PET/MRI is a multimodality imaging that 
combines the high sensitivity of  [18F]FDG PET/CT in 
detecting vascular/perivascular inflammation with the high 
specificity. PET/MRI is a feasible tool in RF combining 
metabolic imaging  ([18F]FDG uptake) of inflammatory 
cells with high signal intensities at DWI, T2-W and T1-W 
images (most probably due to edema-related structural tissue 
changes and hypercellularity in active fase of disease [128].

Role of  [18F]FDG PET/CT in fever of unknown origin

FUO is the acronymous of fever of unknown origin and 
refers to a prolonged febrile illness without an established 
etiology despite intensive evaluation and diagnostic testing 
[129]. Its definition has changed several times since 1961 
to the present day. Petersdorf and Beeson defined FUO as 
an illness of more than 3 weeks’ duration with fever higher 
than 38.3 °C (101 °F) on several occasions and diagnosis 
uncertain after 1 week of study in the hospital [130]. Actu-
ally, current definition of FUO is as follows:

(1) Temperature ≥ 38.3 °C (101 °F) on at least two occa-
sions;

(2) Duration of illness ≥ 3 weeks or multiple febrile epi-
sodes in ≥ 3 weeks;

(3) Not immunocompromised (defined as neutropenia for 
at least 1 week in the 3 months before the start of the 
fever; known HIV-infection; known hypogammaglobu-
linemia or use of 10-mg prednisone or equivalent for at 
least 2 weeks in the 3 months before the start of fever);

(4) Uncertain diagnosis despite thorough history-taking, 
physical examination, and the following investigations: 
ESR or CRP, haemoglobin, platelet count, leukocyte 
count and differentiation, electrolytes, creatinine, 
total serum protein, protein electrophoresis, alkaline 
phosphatase, aspartate aminotransferase, alanine ami-
notransferase, lactate dehydrogenase, creatine kinase, 
ferritin, antinuclear antibodies, rheumatoid factor, 
microscopic urinalysis, three blood cultures, urine 
culture, chest x-ray, abdominal ultrasonography, and 
tuberculin skin test or interferon gamma release assay 
[131].

Causes of FUO include more than 200 categories [132], 
but nowadays, the four major causes are represented by 

infections, malignancies (so-called “pyrogenic cancers” such 
as lymphoma, leukaemia, colon cancers, pancreatic cancer, 
sarcoma and brain tumours), noninfectious inflammatory 
diseases (NIID; which includes autoimmune, autoinflam-
matory and granulomatous disease, and vasculitides), and 
miscellaneous causes [129, 132–134]. Approximately, 30% 
of patients with FUO may eventually be diagnosed with a 
rheumatologic disease [134]. Similar to FUO, the etiology 
of inflammation of unknown origin (IUO) may vary from a 
self-limited disease to a malignancy. IUO is defined as an ill-
ness of at least 3 weeks’ duration with signs of inflammation 
but temperatures not > 38.3 °C on more than three occasions; 
CRP > 30 mg/L and/or ESR > age/2 in men or (age + 10)/2 
in women on more than three occasions; and uncertain diag-
nosis despite appropriate investigations after at least three 
days in hospital or three outpatient visits [132].  [18F]FDG 
PET/CT plays an important role in the diagnosis of patient 
with FUO and IUO, because  [18F]FDG accumulates both in 
inflammatory cells (granulocytes, lymphocytes, monocytes/
macrophages) and neoplastic cells with increased rate of gly-
colysis. A search for potential diagnostic clues (PDCs) in a 
complete and repeated history-taking, physical examination, 
and the essential investigations are important for diagnosing 
FUO. PDCs are defined as all localizing signs, symptoms, 
and abnormalities potentially indicating a certain diagno-
sis. When PDCs are absent  [18F]FDG PET/CT should be 
performed to guide additional diagnostic tests [135, 136].

The diagnosis of patients with FUO or IUO represents 
a challenging medical problem. Timely identification and 
precise localization of the causes of FUO (and IUO) is criti-
cal for decision on further diagnostic procedures and the 
initiation of appropriate treatment [137]. In this setting,  [18F]
FDG PET/CT can be useful in identifying origins of FUO 
(or IUO) with a whole-body imaging characterized by high 
resolution, high sensitivity in low-grade infections and in 
early stage of inflammations, improved anatomical resolu-
tion (with CT component) and a relative low radiation expo-
sure (about 15 mSv rather than 20–25 mSv of a diagnostic 
CT scan) [129, 135, 138, 139]. Takeuchi et al. found that 
after a series of unsuccessful investigations for fever workup, 
patients with negative PET/CT results have approximately 6 
times higher than average chance of spontaneous remission 
than those with positive PET/CT results. These findings sug-
gest that a negative PET/CT result can be a good predictor 
of favourable prognosis in patients with undiagnosed classic 
FUO after a series of unsuccessful investigations [140]. In 
previous years, before PET imaging expanded, other radiop-
harmaceutcals were routinely used in FUO such as: 67 Ga-
citrate, radiolabeled white blood cells (with 111In-Oxine or 
99mTc-HMPAO), anti-granulocytes antibodies, each with 
their own advantages and disadvantages. Of these, 99mTc-
HMPAO-WBC scintigraphy remains a valid alternative to 
 [18F]FDG, and, it has been suggested, in particular, in these 
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patients with a high pre-test probability of infection (clini-
cally and laboratory evaluated) [141]. By contrast,  [18F]FDG 
is certainly more indicated in all cases with a low pre-test 
probability of infection [141].

Most existing meta-analyses, focussing on  [18F]FDG 
PET/CT sensitivity in FUO (or IUO), are limited by (a) dif-
ferent definitions of FUO, (b) observational data involving 
small samples, (c) immunocompromised patients enrolled, 
(d) retrospective studies, (e) outdated case definitions, (f) 
poor generalizability, (g) differences in  [18F]FDG PET/CT 
timing, and also (h) the absence of a reference standard for 
the investigation of FUO (or IUO) to enable estimates of 
diagnostic accuracy [129, 139]. Two meta-analyses reported 
a sensitivity of 85% (95% CI 81–88%; 15 studies) and of 
98% (95% CI 94–99%; 9 studies), respectively, while Bharu-
cha et al. in 2007 reported an achieved diagnosis in 56% of 
patients, consistent with the previous concept of “overall 
helpfulness” (54%) [139]. Besson et al. in 2016 claimed that 
sensitivity, specificity and derived parameters (positive pre-
dictive value, negative predictive value, likelihood ratios) 
are potentially unsuitable in FUO (or IUO) [142]. Pijl et al. 
recently evaluated the diagnostic utility of  [18F]FDG PET/
CT in intensive care patients with bloodstream infection. In 
this setting,  [18F]FDG PET/CT is very important because 
patients are in critical clinical conditions, poorly collabo-
rating and cannot wait for a WBC scan.  [18F]FDG allowed 
to identify an infection focus with a a sensitivity of 90.9% 
and a specificity of 87.5%, leading to a change in clinical 
management in about 47% of cases [143].

Clinical indications

– Evaluation of unknown sites of inflammation (particu-
larly in patients with low probability of infection);

– Evaluation of unknown sites of neoplastic disease as 
causes of systemic symptoms;

– Guide biopsy;
– Assessment of therapeutic efficacy;
– Assessment of prognostic value [140].

Once the cause of FUO (or IUO) is correctly identified 
(vasculitis, endocarditis, etc.), the role and timing of  [18F]
FDG PET/CT imaging in the management of patient will be 
that corresponding to the specific pathology.

Interpretation criteria

Qualitative analysis is based on the identification of all sites 
of pathological radiopharmaceutical uptake towards which 
the diagnostic path should be addressed. False-negative 
results were reported in diseases such as systemic lupus 
erythematosus, cytomegalovirus infection, toxoplasmosis, 
urinary infection, septicaemia, pyelonephritis and Crohn’s 

disease [144] and in sites of para-physiological radiophar-
maceutical uptake.

Future perspectives and new trends

Since FUO is very often an atypical presentation of a 
specific disease, the possibility of using new acquisition 
modalities, new tracers or PET/MRI overlaps with what is 
described in the specific paragraphs of the other pathologies.

Role of  [18F]FDG PET/CT in sarcoidosis 
and tuberculosis

Sarcoidosis and tuberculosis are granulomatous diseases 
with heterogeneous clinical manifestations. The typical 
lesion of sarcoidosis is granuloma with non-caseous necro-
sis, while caseous necrosis granuloma is characteristic of 
TBC. Lung is the most commonly involved organ; however, 
in patients with sarcoidosis and tuberculosis any organ or 
tissue can be involved. Tuberculosis is due to mycobacte-
rium tuberculosis while the exact etiology of sarcoidosis is 
yet to be determined. Sarcoidosis might be the result of an 
exaggerated immune reaction after exposure to unidentified 
antigens in subjects who are genetically susceptible [145]. 
The clinical course of sarcoidosis is variable. The overall 
prognosis is generally good. In about half of patients, disease 
spontaneously resolves within 2–5 years. In some cases, it 
progresses to pulmonary fibrosis for poor drug response 
without a known reason (about 10–15%). Usually, an effi-
cient immune response eliminates tuberculosis bacilli. In 
some patients, a latent infection may run asymptomatic with 
the restriction of non-replicating mycobacteria bacilli inside 
granulomas. Only in a small proportion of subjects, the 
tuberculosis infection clinically appears with active inflam-
mation and symptoms [146]. Severity of these diseases 
ranges from a completely asymptomatic clinical picture to a 
massive pulmonary involvement leading to important res-
piratory failure. The most common symptoms are a persis-
tent cough and fatigue. All these symptoms are quite non-
specific and can delay diagnosis. Tuberculosis remains a 
global emergency in developing countries. India is the most 
affected region, followed by China and Indonesia [147]. The 
pulmonary radiological signs of sarcoidosis and tuberculosis 
are quite heterogeneous. A typical sign of sarcoidosis is the 
presence of diffused micro-nodular pulmonary infiltration 
with lymphatic distribution often associated with intra and 
interlobular septal thickening [148]. Another radiological 
manifestation is the presence of bilateral peri-bronco-vascu-
lar and peri-hilar consolidations. Lung and lymph nodes 
(hilar and mediastinal) are usually both involved. In pulmo-
nary tuberculosis, we find radiological signs as parenchymal 
consolidations in any lobe (also multilobar consolidations), 
ground glass opacities, pleural thickening and pleural 
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effusion, micro-nodular infiltration, parenchymal scar (calci-
fied or not) and hilar and mediastinal lymphadenopathy 
[149–151]. Fibrosis, bronchiectasis, parenchymal cavities, 
volume loss are outcomes of a possible evolution. Extra-
thoracic involvement in sarcoidosis is present in more than 
30% of cases and it can be the major or the only disease 
manifestations. Skin involvement is the most common extra-
thoracic manifestation, and it can manifest as skin nodules, 
erythema nodosum, rashes and plaques [145, 148]. Other 
common manifestations are enlarged peripheral lymph 
nodes, arthritis and uveitis. Liver, spleen and retroperitoneal 
lymph nodes are frequent involved. Other gastro-intestinal 
localizations are rare. Sarcoidosis can involve cardiac tissue 
(a potentially life-threatening localization) with clinical 
manifestations that include atrioventricular block, ventricu-
lar arrhythmias, congestive heart failure, sudden death and 
consequences of impairment in sympathetic nerve activity 
[152, 153]. The left ventricle is the most commonly involved 
chamber. Extra-pulmonary tuberculosis occurs in about 20% 
of patients. Musculoskeletal involvement is quite frequent 
with prevalent involvement of the spine (in approximately 
50% of cases) [152]. The most common form is the spondy-
lodiscitis (Pott’s disease) usually localized in the lower dor-
sal or upper lumbar spine [149]. Multifocal bone involve-
ment is not rare. Neurologic involvement in sarcoidosis e 
tuberculosis is not common. The most frequently affected 
sites are the cranial nerves, meninges and brain parenchyma. 
Symptoms related to neurologic involvement are peripheral 
pain, dysesthesia and various autonomic disturbances. The 
main consequences of chronic granulomatous diseases are 
fibrosis and the related damage to the involved organs. The 
goals in the management of these patients are to prevent or 
limit organ damage, relieve symptoms and improve the qual-
ity of life [151–154].  [18F]FDG PET/CT is not routinely 
included in the workup for granulomatous diseases. Chest 
radiography is the first diagnostic modality. The Scadding 
criteria based on chest radiography that classify sarcoidosis 
in five stages correlates poorly with symptom severity, extra-
pulmonary disease, pulmonary function tests and prognosis 
[145]. The high-resolution CT is the elective method to 
study pulmonary parenchyma morphology. Anyhow, radio-
logical techniques do not correlate well with the state of 
inflammatory activity [155]. Biochemical markers (ACE, 
sIL-2R, neopterin) are useful but negative serologic findings 
do not exclude the presence of active disease [145, 156–158]. 
Symptoms like coughing and dyspnea are not specific.  [18F]
FDG PET/CT is a sensitive technique to assess the inflam-
matory activity in sarcoidosis and tuberculosis by detecting 
and quantifying the level of inflammatory foci in pulmonary 
parenchyma and elsewhere in the body. Sarcoidosis and 
tubercular active lesions show an increased  [18F]FDG uptake 
[157, 159–163].  [18F]FDG uptake reflects the high glycolytic 
activity of activated macrophages and lymphocytes, 

prominent in granulomatous inflammatory processes [164, 
165]. End-stage fibrosis may show anatomical abnormalities 
but the disease itself has become inactive [156].  [18F]FDG 
PET/CT scan could play an important role in tuberculosis 
patients with negative sputum or in sarcoidosis patients with 
low level of serological inflammatory markers (ACE, sIL-
2R, neopterin). Several studies suggest  [18F]FDG PET/CT 
to be superior in evaluating disease activity compared to 
serological inflammatory markers, bronchoalveolar lavage 
and to conventional radiological techniques [145, 156].  [18F]
FDG PET/CT is an effective procedure to define the extent 
of disease accurately and it is able to detect more sarcoidosis 
or tuberculosis lesions than any other routine radiological 
technique. A whole-body evaluation in a single examination 
is not possible with other imaging modalities. Pulmonary 
and extra-pulmonary involvements (skin, bone, bone mar-
row, SNC, myocardium …) are simultaneously evaluated, 
with time and cost-saving implications [149, 157, 166, 167]. 
Bone biopsy is not necessary in patients with proven disease 
and typical bone involvement based on  [18F]FDG PET/CT 
or MRI [168].  [18F]FDG PET/CT may be superior to CT or 
MRI for detecting bone and bone marrow sarcoidosis [169]. 
An accurate assessment of the extent of the disease allows a 
better prognostic evaluation in these patients.  [18F]FDG 
PET/CT is an excellent tool to demonstrate hidden or atypi-
cal lesions [157, 170] and to identify the most accessible site 
for biopsy (cutaneous nodules, superficial lymph nodes, con-
junctival lesions, lacrimal or parotid gland lesions) for a 
rapid diagnosis [156, 161].  [18F]FDG PET/CT is probably 
the most important tool for monitoring the treatment 
response and for planning clinical management [158, 160, 
163, 166, 167, 170, 171]. During treatment, sometimes 
granulomatous lesions do not decrease in size also for a long 
time. Radiological techniques may be unable to establish 
whether the disease is in remission or not.  [18F]FDG uptake 
in granulomas decreases after proper treatment [172] and it 
could be predictive for the response to treatment.  [18F]FDG 
PET/CT is useful in therapeutic decision-making in patient 
refractory tofirst line therapy [173] and it allows to identify 
residual active disease versus scarring after therapy [154, 
159, 174]. Non-responder patients should be treated with 
further therapy [154, 158, 161]. Patients with residual ongo-
ing inflammatory sarcoidosis might benefit from a change 
or increase of the anti-inflammatory therapy. Standard treat-
ment duration for tuberculosis is about 6 months. Early treat-
ment response assessment may allow a rapid identification 
of patients who respond poorly to treatment [146]. After 
1 month of anti-tuberculosis treatment, a decrease of approx-
imately one-third in  SUVmax of pulmonary and extra-pulmo-
nary lesions is indicative of a good response [149, 175]. In 
patients with radiographic lesions suggestive of old healed 
tuberculosis and with suspected recurrence of the disease, 
 [18F]FDG PET/CT can evaluate the metabolic status of 
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lesions to identify patient at high risk of disease recurrence 
[146, 174, 176]. Atypical manifestations and imaging find-
ings can make diagnosis challenging.  [18F]FDG PET/CT can 
direct the diagnostic hypothesis in patients with non-specific 
symptoms [154].

Clinical indications

– Evaluation of disease activity;
– Differential diagnosis between reversible granuloma from 

irreversible fibrosis;
– Diagnosis of occult disease;
– Evaluation of disease extent in initial studies;
– Evaluation of prognostic assessment;
– Evaluation of treatment response;
– Evaluation of early treatment response;
– Identification of most suitable site for biopsy;
– Performing diagnostic hypothesis in patients with non-

specific symptoms

Interpretation criteria

[18F]FDG uptake of granulomatous lesions correlates with 
disease activity [151, 157]. The immune status of the host 
or the presence of comorbidity can affect the  SUVmax of 
lesions.

Qualitative analysis:

1. Right para-tracheal and bilateral hilar lymph nodes 
involvement: increased  [18F]FDG uptake defines the 
so-called lambda sign (λ), an imaging finding sugges-
tive of active sarcoidosis, similar to the lambda sign of 

67Ga-citrate scintigraphy, an investigation no longer car-
ried out [177, 178].  [18F]FDG PET/CT is superior to 
67Ga-citrate scintigraphy in the evaluation of active sar-
coidosis [179]. The presence of lambda sign (λ) whether 
or not combined with lung parenchymal active disease, 
supports the likelihood of sarcoidosis [156].

2. Pulmonary involvement with cavitation: cavitation is the 
radiological hallmark of post-primary tuberculosis PTB 
and it is radiographically evident in 20–45% of patients. 
Cavitation may progress to endobronchial spread and 
results in a typical ‘tree in bud’ pattern in addition to 
cavitation. These radiological markers, indicative of 
active tuberculosis [149] usually show increased  [18F]
FDG uptake. Radiological features indicative of inactive 
tuberculosis are thin-walled smooth cavities, fibrosis, 
and parenchymal, nodal, or pleural calcifications [149]. 
In systemic tuberculosis, any site of active disease shows 
elevated  [18F]FDG uptake (Fig. 4).

3. Pulmonary miliary involvement: in both sarcoidosis and 
tuberculosis, it is possible to detect a pulmonary mil-
iary pattern that consist of innumerable micro-nodules 
(1–3 mm) randomly distributed throughout both lungs 
[149]. In these patients, it is possible to see a mild dif-
fused inhomogeneous pulmonary uptake. In active dis-
ease, micro-nodules may coalesce to form focal or dif-
fused consolidation with more intense  [18F]FDG uptake.

4. Pleural effusion involvement: in case of pleural effusion, 
it is possible to see a smooth thickening of visceral and 
parietal pleura with diffusedly intense  [18F]FDG uptake 
similar to pleural mesothelioma [149, 150].

5. Skin involvement: moderate/intense radiopharmaceu-
tical uptake is detectable on active cutaneous lesions 

Fig. 4  Initial evaluation of a > 30-year-old woman from Argentina 
with FUO and recent finding of pulmonary bilateral consolidations. 
18F-FDG PET/CT shows moderate/high radiotracer uptake in solid/
sub-solid consolidations localized in the upper areas of both lungs. 

Mild 18F-FDG uptake coexists in enlarged hilar and mediastinal 
lymph nodes. Histopathologic evaluation establishes the diagnosis of 
sarcoidosis
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with a focal or diffused distribution pattern related to the 
type of lesion (skin nodules, erythema nodosum, rashes, 
plaques …).

6. Lacrimal and salivary glands involvement: another typi-
cal imaging finding suggestive of active sarcoidosis is 
the so-called “panda sign”, an uptake pattern charac-
terized by increased and symmetric radiopharmaceuti-
cal accumulation in the grossly enlarged lacrimal and 
parotid glands. The radiopharmaceutical uptake of the 
submandibular glands is only minimally increased [178].

7. Myocardial involvement:  [18F]FDG PET/CT is a sensi-
tive test to evaluate the myocardial involvement [180]. 
The elective approach should consider performing a per-
fusion and an inflammation evaluation at the same time. 
Dual perfusion-inflammation PET/CT scan seems to be 
the elective way but this approach can only be possible 
in a medical center equipped with cyclotron. The com-
bined interpretation of the two procedures (perfusion 
and inflammation  [18F]FDG PET/CT scan) allows eval-
uating the presence of active myocardial localizations 
and their response to treatment. In cardiac sarcoidosis 
involvement, perfusion is normal or decreased and in 
the same involved area,  [18F]FDG uptake is increased. 
Fibrosis usually demonstrates reduced perfusion and 
 [18F]FDG uptake [154]. However, besides  [18F]FDG 
PET/CT for cardiac involvement, a myocardial perfu-
sion scan should be recommended [156].

8. Neurological involvement: granulomatous lesions may 
appear hypo- or hypermetabolic depending on the neu-
rologic site or brain area involved.

9. Musculoskeletal involvement: usually demonstrates avid 
 [18F]FDG activity [181] and high radiopharmaceutical 
uptake. Some radiological signs associated with tuber-
culous spondylodiscitis are: frequent localization in the 
posterior portion of the vertebra, bone destruction due to 
the appearance of areas of osteolysis, narrowing of the 
disc, swelling and padding of the paravertebral soft tis-
sues, deformation of the vertebral with somatic collapse. 
In severe cases, deformation of the spine can occur 
(kyphotic or gibbus deformity). The signs of repair are 
represented by osteosclerosis.

Quantitative analysis: viable Mycobacterium tuberculosis 
may persist in a quiescent state for years. The detection of 
mild increased  [18F]FDG uptake  (SUVmax 1.5 or little more) 
in radiological features suggestive of old healed tuberculosis 
lesions (nodules or scars) do not necessarily represent active 
disease, but might reflect a state of equilibrium between the 
host’s immune response and the replicating bacilli [151]. 
Latent infection may develop to active disease. Patients with 
radiological features suggestive of old healed tuberculosis 
but with increased  [18F]FDG uptake may be at higher risk 
of relapse of disease [149, 176]. A  SUVmax above 2.0 may 

reflect ongoing disease even if the patient has no clinical 
symptoms [151]. In patients with active sarcoidosis or tuber-
culosis,  [18F]FDG PET/CT scan shows increased radiophar-
maceutical uptake in any site of disease with high level of 
 SUVmax. Usually, tuberculous spondylodiscitis have higher 
 SUVmax compared with pyogenic spondylodiscitis [151, 
182].

Future perspectives and new trends

Future perspectives may concern the use of alternative PET/
TC radiopharmaceuticals (gallium-68 citrate, choline deriva-
tives, 18F-Fluoro-l-thymidine, 18F-Fluoromisonidazole) or a 
combined use of 2 radiopharmaceuticals at the same time. 
However, further studies are required [151, 183]. The greater 
availability of hybrid tomographs PET/MRI could improve 
the study of extra-pulmonary involvement (cardiac, hepatic, 
spinal, musculoskeletal, splenic, neurologic involvement). 
Although  [18F]FDG PET/CT is not included in the stand-
ard workup for sarcoidosis and tuberculosis, it appears to 
be a promising and valid technique for the management of 
patients affected by these diseases.  [18F]FDG PET/CT is 
useful in the initial diagnosis to assess disease extent, to 
valuate inflammatory activity and to assess early or final 
treatment response. Moreover,  [18F]FDG PET/CT is able 
to reveal extra-pulmonary disease lesions, the most suitable 
site for biopsy and it can be helpful to direct the diagnosis in 
patients with non-typical symptoms. It is legitimate to think 
that a proper interpretation of both CT and PET findings 
(both radiological and metabolic features) is necessary to 
improve the accuracy of the examination.

Role of  [18F]FDG PET/CT in management of invasive 
fungal infections and HIV‑infection

IFI are common in immunosuppressed patients, particularly 
those with human immunodeficiency virus (HIV) infection, 
recipients of solid organ or hematologic stem cell transplants 
and oncologic patients [184]. IFI are not caused by a single 
organism but by a number of different species of fungi that 
have been generally divided into yeasts and moulds. Can-
dida spp is the most common type of yeast whilst Aspergil-
lus spp is the most common type of mould. Cryptococcus 
and Pneumocystis are more likely to be found in HIV-
positive patients [185]. Immunocompromised patients are 
prone to develop disseminated multisite disease, with the 
lungs being the most common site of IFI; the dissemina-
tion to other organ systems, including the central nervous 
system, heart, kidney, and liver, usually occurs by a hema-
togenous dissemination [186]. Early diagnosis or exclusion 
of infection is of utmost importance for the optimal man-
agement of these patients and, considering that the sites of 
 [18F]FDG accumulation in infectious tissue are migratory 
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inflammatory cells, micro-organisms and granulation tissue, 
 [18F]FDG PET/CT may be useful to identify lesions associ-
ated with early IFI, reveal the extent of the disease, and mon-
itor the treatment response to antifungal therapy [187, 188]. 
Immunosuppression due to HIV-infection results in a variety 
of opportunistic infections or tumours. On HIV-infection, 
resting lymphocytes are activated and switch to glycoly-
sis, increasing their glucose uptake by around 20-fold over 
24 h. This increased cellular glucose utilization by activated 
lymphocytes in affected nodes can result in increased  [18F]
FDG uptake, quantifiable by  [18F]FDG PET/CT. Accord-
ing to recent studies,  [18F]FDG PET/CT proved useful in 
detecting both malignancies and infections in HIV-positive 
patients [187, 189–191]. Furthermore,  [18F]FDG PET/CT 
may prove useful for evaluating the effectiveness of highly 
active anti-retroviral therapy (HAART) in suppressing HIV 
replication, but also in evaluating common side effects of 

treatment such as lipodystrophy and immune reconstitution 
inflammatory syndrome (IRIS) [189].

Clinical indications

Although no appropriateness criteria have been developed to 
date for  [18F]FDG PET/CT in management of immunocom-
promised and HIV-positive patients with suspected or known 
IFI, some recent evidence and common expert opinions con-
cluded that major indications are as follows [187–193]:

– To detect IFI in immunocompromised patients with per-
sistent fever when conventional CT is inconclusive;

– To identify clinically occult and disseminated IFI in 
immunocompromised and HIV-positive patients (Fig. 5); 
to monitor response to IFI treatment after adequate dura-
tion of empirical therapy, and CT suggests persistent 

Fig. 5  > 50-year-old woman with non-Hodgkin lymphoma, stage III, 
and secondary immunosuppression due to CHT and myelofibrosis. 
CT transaxial (A) and 18F-FDG PET/CT fused transaxial (B) imag-
ing show mild pericardial and pleural effusion. The patient had fever 
without response to antibiotic therapy and pancytopenia. CT transax-
ial scan after contrast media injection (C) and 18F-FDG PET/CT 

fused transaxial (D) imaging after 6 months of corticosteroid therapy 
show persistent pericardial and pleural effusion and multiple pulmo-
nary nodular lesions, later diagnosed as aspergillomas, which show 
intense 18F-FDG uptake. Typical Aspergillus lesion in left pulmo-
nary hilar region,  SUVmax 6.0
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lesions, to diagnose HIV-related opportunistic infec-
tions, associated neoplasms, and Castleman’s disease, to 
monitor response to HAART and evaluate common side 
effects of treatment in HIV-positive patients (Fig. 6).

Interpretation criteria

Qualitative analysis for IFI: PET images should be visually 
analysed by looking for increased  [18F]FDG uptake, tak-
ing into consideration the pattern (focal, linear, diffused), 
homogeneity, intensity and relationship to areas of physi-
ologic distribution, then PET information is compared with 
morphologic information obtained by previous instrumental 
exams, such as CT, MRI or US [188, 192]. In contrast to its 
use in oncology, quantitative analysis with SUV has not been 

validated in IFI, therefore, SUV in this field should be used 
with caution in clinical practice and may be used as a purely 
descriptive means of reporting, but the measurement should 
not be used to render a specific diagnosis [27, 194]. Most 
research articles on the subject have defined interpretation 
criteria for the purposes of the study, although no definitive 
consensus has been agreed on [195, 196]. IFI have been 
known to accumulate  [18F]FDG and the uptake in these focal 
lesions was found to correspond to disease activity, making 
 [18F]FDG PET/CT a useful tool for IFI follow-up [197].

Qualitative and semi-quantitative analysis for HIV: in 
HIV-positive patients it is recommended to perform quali-
tative visual and semi-quantitative analysis evaluating 
 SUVmax and  SUVmean, symmetry, pattern and intensity of 
 [18F]FDG uptake in bone marrow, liver, spleen and principal 
nodal region. When possible, a comparison with previous 
 [18F]FDG PET/CT exams should be performed [189, 198]. 

Fig. 6  > 30-year-old man with HIV with fever and severe weight 
loss. CT transaxial (A) and 18F-FDG PET-TC fused transaxial (B) 
imaging show diffused and intense splenic 18F-FDG uptake  (SUVmax 
4.2), greater than liver. Further finding is a focal intense 18F-FDG 
uptake  (SUVmax 9.0) localized at superior pole of the spleen, without 
consensual alterations at CT scan. These findings, along with mild 

diffused lymph nodal uptake  (SUVmax 4.1), are suggestive for lym-
phomatous disease, but the patient was eventually diagnosed with dis-
seminated histoplasmosis. CT transaxial (C) and 18F-FDG PET-TC 
fused transaxial (D) imaging after 1 month of follow-up show mild 
peritoneal effusion, persistent inhomogeneous and intense 18F-FDG 
splenic uptake, greater than liver, without focal hypermetabolic areas



319Clinical and Translational Imaging (2021) 9:299–339 

1 3

Splenic  [18F]FDG uptake greater than hepatic  [18F]FDG 
uptake is commonly observed in HIV-positive patients in 
the earlier stages of the disease and may indicate a lympho-
matous involvement of the spleen [189]. In HIV-positive 
patients with subclinical neurologic dysfunction  [18F]FDG 
PET/CT may show relative hypermetabolism in the basal 
ganglia, especially in the striatum, followed by late cortical 
and subcortical hypometabolism or globally reduced cortical 
18F-FDG uptake [189]. Immune reconstitution inflamma-
tory syndrome (IRIS) must be considered when evaluating 
patients undergoing HAART, showing worsening manifesta-
tions of underlying opportunistic infections (OI) or neopla-
sia or with abrupt and frequently atypical presentation of 
an occult OI or neoplasia. These patients showed increased 
 [18F]FDG uptake in bone marrow, spleen and lymph nodes 
prior to HAART initiation and a persistent abnormally ele-
vated bone marrow and spleen metabolism 4–8 weeks after 
HAART initiation, that reflects the inflammatory response 
restoration induced by therapy [189, 193, 199, 200]. Fur-
thermore, diffused  [18F]FDG uptake in subcutaneous fat 
could be related to HIV-associated lipodystrophy syndrome 
(HALS) in long-term HAART patients and could be mis-
taken for infectious disease [191, 201].

Remarks

In IFI,  [18F]FDG PET/CT may be useful to identify lesions 
associated with early infection, reveal the extent of the dis-
ease, and monitor the treatment response to antifungal ther-
apy. In HIV-infection  [18F]FDG PET/CT proved useful in 
detecting both malignancies and infections in HIV-positive 
patients. Furthermore,  [18F]FDG PET/CT may prove useful 
for evaluating the effectiveness of highly active anti-retro-
viral therapy (HAART) in suppressing HIV replication, but 
also in evaluating common side effects of treatment such 
as lipodystrophy and immune reconstitution inflammatory 
syndrome (IRIS).

Role of  [18F]FDG PET/CT in SARS‑CoV‑2 infection

Since its beginning in December 2019 in Wuhan, Hubei 
province of China, the coronavirus COVID-19 (SARS-
CoV-2) pandemic of zoonotic origin is affecting world 
public health and testing the health systems of the various 
countries. Coronaviruses are non-segmented, enveloped 
positive-sense ribonucleic acid viruses from the Corona-
viridae family. This terrible global health crisis of our time 
has involved more than 185 countries worldwide with mil-
lions of cases and thousands of related deaths. In concord-
ance with current evidence, the infection is mainly based 
on person-to-person transmission, especially via respiratory 
droplets, oro-faecal transmission, but also via contact with 
organic fluids contaminating surfaces. The clinical scenario 

is very different from case to case and may be mild with 
symptoms as fever, cough, fatigue, ageusia, shortness of 
breath, myalgia, anosmia and in some patients, gastroin-
testinal infection symptoms or much more severe; in these 
cases, it could lead the patient to the need for hospitalization 
in intensive care in consequence of complications (especially 
in the elderly and patients with comorbidities) such as acute 
respiratory distress syndrome (ARDS), cytokines storm and 
thromboembolism. The reverse-transcriptase polymerase 
chain reaction (RT-PCR) is a nuclear acid test and represents 
the gold standard for the diagnosis of COVID-19 infection, 
but false-negative results are possible and responsible of a 
missed diagnosis causing the spread of the epidemic. As a 
consequence, clinical diagnosis is an alternative and it is 
mainly based on exposure history, symptoms, serological 
tests and imaging; chest high-resolution CT represents the 
main imaging diagnostic tool and is the routine-preferred 
method for screening, diagnosis, course severity assessment, 
and therapy monitoring. The role of  [18F]FDG PET/CT in 
infectious/inflammatory disease is continuously growing in 
the field of infectious and inflammatory diseases.

Chu et al. [202] found that the SARS-CoV-2 infection 
significantly upregulates inflammatory mediators. This fact 
has suggested the insight that  [18F]FDG PET/CT may be a 
potential imaging tool for COVID-19. The study of Deng 
et al. who have also argued for the possible  [18F]FDG PET/
CT utility, as a sensitive tool to detect and monitor inflam-
matory diseases, such as viral pneumonia, its progression, 
and treatment outcomes moves in this direction [203, 204].

Clinical indications

The role of  [18F]FDG PET/CT should be reflected in changes 
in uptake patterns and locations during virus exposure, 
which may be useful for monitoring the effects of treatment. 
Despite this insight, no high-quality evidence or guideline 
are currently available to consider  [18F]FDG PET/CT as an 
integral and structured part of the COVID-19-related pneu-
monia diagnostic flow-chart. Joob and Wiwanitkit who 
are of this opinion, have highlighted that  [18F]FDG PET/
CT is still not recommended in infectious pneumonia, and 
especially have warned of the risk of disease spreading in 
PET departments [205]. Other authors are of the same opin-
ion; in particular Treglia [206] highlights that an increased 
metabolic activity in pulmonary or lymph nodal lesions in 
patients with COVID-19 infection is not surprising and it 
is not specific since other infective/inflammatory diseases 
can show the same aspect. As a consequence, Treglia states 
that  [18F]FDG PET/CT should not be recommended for the 
evaluation of patients with known or suspected COVID-19 
infection remaining the chest CT the imaging gold stand-
ard. Moreover, so far, there are no data suggesting an added 
value of  [18F]FDG PET/CT compared to chest CT in the 
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management or outcome of patients with COVID-19 infec-
tion and the hypothesis that  [18F]FDG PET/CT could be use-
ful in this setting is excessive and not demonstrated.

Interpretation criteria

CT patterns:

– Peripheral ground-glass opacities and/or consolidative 
opacities in more than two pulmonary lobes (especially 
involving both lungs); during the disease progression, 
the lesions increase and spread, the inflammatory exuda-
tion, consolidation, and density increase, and other signs 
like pulmonary vascular shadow thickening, air bronchi 
sign, paving stone sign, interlobular septal thickening 
also called “crazy paving” and pleural effusion appear. 
A scoring system evaluation as the CO-RADS categori-
cal CT assessment scheme for patients suspected of hav-
ing COVID-19 pneumonia is suggested [207]; it con-
sists of six scores: 0 non interpretable (scan technically 
insufficient for assigning a score), 1 very low (normal 
or noninfectious), 2 low (typical for other infections but 
not COVID-19), 3 equivocal/unsure (features compatible 
with COVID-19 but also other diseases), 4 high (sus-
pected COVID-19), 5 very high (typical for COVID-19), 
6 proven (RT-PCR positive for SARS-CoV-2). Despite 
the CT component of hybrid imaging sessions used for 
attenuation correction show a lower diagnostic quality 

not equivalent to that of dedicated chest CT (in particular 
a lack of deep inspiration can contribute to higher den-
sity in the posterior lung fields), it could be sufficient to 
diagnose or suspect COVID-19 infection.

PET patterns:

– COVID-19 pulmonary infections are characterized 
by 18F-FDG uptake (Fig. 7) and reflects a significant 
inflammatory burden, similarly to that elicited by the 
Middle East respiratory syndrome or the H1N1 pandemic 
influenza virus [208–211]. After the infection, the cas-
cade of reactions activates inflammatory cells such as 
monocytes, neutrophils, effector T cells and determine 
a local chemokines release. Activated neutrophils are 
heavily dependent on anaerobic glycolysis, requiring 
increased glucose supply; this results in high  [18F]FDG 
uptake confirmed by high  SUVmax values; granulocytes 
and macrophages also facilitate glucose transport under 
chronic conditions [212]. COVID-19 infections could 
be accompanied by lymphadenopathy [213]; Qin et al. 
[214], who moves in this direction, reported that lung 
lesions of patients with COVID-19 pneumonia are char-
acterized by a high  [18F]FDG uptake as well as lymph 
nodes. So far, most of the reports available, are case 
reports, case series or, rarely, retrospective studies report-
ing about incidentally detected COVID-19 infections as 
the papers by Wakfie-Corieh et al. [215], Pallardy et al. 

Fig. 7  Left panel: axial PET, CT and fused PET/CT (1a, 1b, 1c), sag-
ittal PET, CT and fused PET/CT (2a, 2b, 2c) and coronal PET, CT 
and fused PET/CT (3a, 3b, 3c) images of a 18F-FDG PET/CT scan 
performed in a 59 year old male patient for oral carcinoma follow-up. 
Images revealed intense tracer uptake on diffused interstitial altera-
tions with ground-glass appearance on both lungs; subsequent RT-
PCR revealed COVID-19 positivity. Right panel: axial PET, CT and 

fused PET/CT (1a, 1b, 1c), sagittal PET, CT and fused PET/CT (2a, 
2b, 2c) and coronal PET, CT and fused PET/CT (3a, 3b, 3c) images 
of a 18F-FDG PET/CT scan performed in the same patient for restag-
ing of oral carcinoma purpose and after completion of COVID-19 
specific therapy; images demonstrated complete disappearance of 
pathological uptake and resolution of interstitial alterations
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[216], Halsey et al. [217] and Setti et al. [218]. Other-
wise, Dietz et al. [219] prospectively enrolled patients 
admitted with COVID-19 and performed  [18F]FDG PET/
CT from day 6 to day 14 of the onset of symptoms with 
the aim of assessing the inflammatory status at the pre-
sumed peak of the inflammatory phase in non-critically 
ill patients. They concluded that there was no correla-
tion between PET lung inflammatory status and chest CT 
evolution or short-term clinical outcome; consequently, 
the inflammatory process at the presumed peak of the 
inflammatory phase in COVID-19 patients was obvious 
in  [18F]FDG PET/CT scans.

Future perspectives and new trends

Large prospective studies contemporary to the evolution of 
the pandemic are desirable to investigate and evaluate the 
effective role of PET in this field.  [18F]FDG PET/CT cannot 
be used in an emergency setting because it is more com-
plex than chest CT and because of a possible risk of disease 
spreading due to the long procedure time; but, nevertheless 
it is not recommended for the diagnosis of this infectious 
disease, incidental findings are frequent during a pandemic 
scenario and the  [18F]FDG PET/CT pattern needs to be well 
known and well described by nuclear medicine physicians. 
Further studies are desirable to confirm or controvert the 
insight of a possible role of  [18F]FDG PET/CT in the diag-
nosis, follow-up and therapy monitoring of SARS-CoV-2 
infection.

Role of 18F‑FDG PET/CT in inflammatory bowel 
disease

IBD is a group of chronic relapsing inflammatory disorders 
of the gastrointestinal (GI) tract, represented by two sub-
types, Crohn’s Disease (CD) and Ulcerative Colitis (UC), 
with typically different bowel location and inflammation 
pattern [220]. IBD has shown growing incidence in the last 
decade with a prevalence > 0.3% and a predominant age of 
onset between 15 and 30 years [221, 222]. A complex inter-
play of luminal microflora, external environment and distur-
bances in the immune response are concomitant etiological 
factors in genetically predisposed hosts [223]. IBD presents 
an important impact on quality of life with GI symptoms 
(including diarrhoea, weight loss, abdominal pain and vom-
iting) and extraintestinal manifestations (rheumatologic, der-
matologic and ocular) [224]. Diagnosis of IBD is currently 
based on clinical, instrumental and histological criteria and 
treatment depends on disease severity [221, 225]. Although 
endoscopy and histological findings are considered the 
diagnostic gold standard, they are not devoid of limitations 
[226]. Other less invasive imaging techniques, such as ultra-
sound (US), CT and MRI, are performed to complete the 

diagnostic workup, with a more accurate overview of the 
disease [221, 227–229].

In the nuclear medicine field, in addition to WBC SPECT/
CT,  [18F]FDG PET/CT is a non-invasive, whole-body and 
hybrid technique, emerging as a reliable tool in the investi-
gation of IBD, especially in active phases of disease, even 
if specific protocols have not been defined yet [220, 223, 
225, 230, 231].

Clinical indications

– Diagnosis in patients with suspected IBD in equivocal 
cases [141, 232];

– Initial assessment of the disease (anatomic location, 
extent, grade of activity):

1. Extra-intestinal disease assessment (i.e. sacro-ileitis 
and lymph nodes involvement).

2. Evaluation of complications (especially differential 
diagnosis between fibrotic and inflammatory stric-
tures with consequent possibility to guide treatment 
strategy).

3. Early evaluation of therapy efficacy.
4. Follow-up and monitoring disease evolution

[18F]FDG PET/CT can be used when other conventional 
studies, particularly endoscopy, are non-diagnostic or infea-
sible [223, 225], as in severe and acute phase of disease, 
because of the high risk of complications (i.e. toxic mega-
colon or perforation), or in presence of strictures [227, 228].

Interpretation criteria

Qualitative analysis:  [18F]FDG PET/CT is considered nega-
tive for IBD when a diffused and mild glucose uptake is 
detectable in bowel [226].  [18F]FDG PET/CT is considered 
positive for IBD when a segmental and significant increased 
glucose uptake in the intestinal tract is observed [226]. In 
addition, the uptake distribution pattern can be useful to dis-
criminate between CD or UC: CD can involve any segment 
of the GI tract, more frequently the distal small bowel, show-
ing discontinuous patches of inflammation; UC primarily 
involves the rectum with a proximally extension in a con-
tinuous way [233].

Semi-quantitative analysis:  SUVmax is the more validated 
semi-quantitative parameter for the evaluation of glucose 
uptake in IBD. To date, no defined cut-off has been iden-
tified to differentiate positive and negative findings [228, 
234]. However, a comparison between  SUVmax of the bowel 
segments involved and liver is encouraged. The liver activity 
can be used as reference, because hepatic glucose uptake is 
relatively stable and reproducible. A bowel  SUVmax lower 
or equal to liver can be considered normal, while a bowel 
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 SUVmax major than liver is suggestive for IBD. No standard-
ized scales of evaluation have been defined yet [224, 226, 
227].

Future perspectives and new trends

[18F]FDG PET/CT could be co-registered to MRI, rather 
than CT, significantly improving diagnostic morphological 
information about bowel wall and decreasing the radiation 
dose [228, 234, 235]. In different clinical protocols,  [18F]
FDG-WBC PET/CT demonstrated a higher specificity than 
 [18F]FDG PET/CT, showing a lower radiopharmaceutical 
uptake in healthy GI and urinary tract, but it needs further 
studies [222, 225]. In preclinical studies, new and more spe-
cific radiopharmaceuticals are under investigation, particu-
larly, 18F-Deoxy-Arabino Furanosyl Cytosine (18F-D-FAC) 
probe with preferential uptake in activated CD8 + lympho-
cytes and 18F-DPA-714, a radioligand of a translocator pro-
tein overexpressed in activated macrophages [222, 225].

Role of 18F‑FDG PET/MRI in infection 
and inflammation

Imaging of inflammatory and infective disease include radi-
ography, conventional scintigraphy with different radiophar-
maceutical agents, CT with or without contrast enhancement 
(c.e.), MR and PET. Each of these has some limitations and 
therefore cannot be considered the only option for diagnosis 
or follow-up of inflammatory and infection disease. Hybrid 
imaging can overcome these limitations by combining mor-
phological and functional information. In particular, PET/
MR scanner offers superior soft tissue contrast to CT even 
without the use of contrast agents, and it is very appealing 
for application in the paediatric population. Furthermore, 
the association of MR that is able to assess blood vessels 
density, perfusion properties and cellular membrane integ-
rity with PET that can evaluate the metabolic properties of 
the cells, represent an important tool for the infection and 
inflammation disease [236, 237], as reported above in the 
majority of future perspectives paragraphs.

Clinical indications

From the available data in literature emerged that  [18F]FDG 
PET/MR can be indicated in some clinical indications in 
infection and inflammation, such as:

- Diagnosis of limbic encephalitis [238];
- Diagnosis and follow-up of SI, [13];
- Diagnosis of CS, [239, 240];
- Diagnosis of LVV, [60, 241];
- Diagnosis of RF, [128].
- Evaluation of CD, [242–244].

Interpretation criteria

The imaging interpretation should consider the PET, MR 
and PET/MR parts for each clinical indication. Therefore, 
a strong collaboration between nuclear medicine physician 
and radiologist is mandatory for the correct interpretation of 
the images, and the preparation of the final report.

1. In case of limbic encephalitis [238], typical patterns at 
MR images are shown, such as a T2 hyperintensity of 
the amygdala, of the hippocampus and/or insula and 
volume alterations of the mesial temporal structures. 
For PET images, the presence of any hypo- or hyper-
metabolism of the limbic system and any extra-limbic 
metabolic changes indicative/potentially associated with 
limbic encephalitis should be noted.

2. In case of spondylodiscitis [13], MR images often dem-
onstrated the presence of hyperintense signal alterations 
on T2-weighted images or turbo inversion recovery mag-
nitude (TIRM) sequences in the disk space appearing 
in both adjacent vertebrae as bone marrow and para-
vertebral soft-tissue edema, while the lesion showed a 
decreased signal intensity on non-contrast T1-weighted 
images. For PET part, the focal FDG uptake in spinal 
disks greater than that in the surrounding tissue (on the 
basis of a visual qualitative analysis) is considered to be 
suggestive.

3. In case of CS [239, 240], at MR images, the presence 
of T2 hyperintensity and/or a late gadolinium enhance-
ment are usually suggestive of a cardiac sarcoidosis. In 
PET images,  [18F]FDG uptake should be classified into 
four patterns (none, diffused, focal, or focal on diffused) 
for each subject. Focal and focal-on-diffused patterns 
of  [18F]FDG uptake should be considered to be positive 
findings indicative of cardiac involvement. The presence 
or absence of right ventricle free-wall  [18F]FDG activ-
ity should also be evaluated. Finally, the 17-segment 
model recommended by the American Heart Associa-
tion should be used for the evaluation of extension of 
disease.

4. In case of LVV [60, 241], MR scan is interpreted by con-
sidering the thickening (> 3 mm) and contrast enhance-
ment of the vessel wall on axial T1-weighted VIBE 
sequences. The presence of signal elevation in the vessel 
wall and visual or quantitatively measurable (> 3 mm) 
wall thickening on coronal T2-weighted STIR sequences 
is indicative for an active LVV. For PET images, a visual 
score is usually used, indicating the intensity of arte-
rial  [18F]FDG uptake in relation to liver uptake [i.e. 
0 = no uptake; I = low-grade uptake (uptake lower than 
liver uptake); II = intermediate-grade uptake (similar to 
liver uptake); III = high-grade uptake (higher than liver 
uptake)].
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5. In case of RF [128], MR images showed a hyper-intense 
signal on T2-weighted, DWI and contrast-enhanced 
images. While for the interpretation of PET images, a 
specific score could be used in relation to the uptake 
in normal liver, as follows: 0 = no pathological uptake; 
1 = pathological uptake but less than liver uptake; 
2 = pathological uptake similar to liver uptake; 3 = path-
ological uptake more than liver uptake.

6. In case of CD, [18F]FDG PET/MRI allows precise 
localization of the inflamed intestinal loop and permites 
the differential diagnosis between fibrotic stenosis and 
inflammatory stenosis. Co-acquisition also enables more 
accurate spatial and temporal matching of MR anatomy 
with PET data, reducing miss-registration artifacts due 
to motion and peristalsis [242, 243]. Attention should 
be paid to understand non-specific activity in transit in 
bowel lumen. A second bed image at 2 h p.i. could help 
in evaluating bowel wall activity versus lumen activity.

Future perspectives and new trends

PET/MRI has great potential to expand in the field of inflam-
mation infection, not only with  [18F]FDG but also with new 
radiopharmaceuticals targeting bacteria or white blood cell 
antigens to provide, in vivo, histological characterization of 
the underlying pathological process and to guide personal-
ized therapy. Indeed, MRI, being a multi-parametric imaging 
modality with radiation emission, is suitable to study several 
inflammatory and infective processes particularly on central 
nervous system, spine, pelvis, soft tissues, heart and vessels.

Role of 18F‑FDG PET/CT in pediatric inflammation 
diseases

In the pediatric population,  [18F]FDG PET/CT imaging may 
play a role in several inflammatory or infectious diseases, 
including fever of FUO, IBD, musculoskeletal inflammation 
and infection (e.g. OM), fungal infection, chronic granu-
lomatous disease and vasculitis (e.g. Henoch-Schonlein pur-
pura, Kawasaki disease, infantile polyarteritis nodosa, and 
Takayasu disease), [245]. The advantage of using  [18F]FDG 
PET/CT imaging for assessing inflammatory or infectious 
diseases in the pediatric population relies on the high spa-
tial resolution and lesion-to-background ratio [246]. Other 
important aspects which favour  [18F]FDG PET/CT imaging 
is the short exam duration, which facilitates the compliance 
of the young patients, and the use of optimized protocols 
which can result in a low radiation burden [245]. A limita-
tion of  [18F]FDG PET/CT imaging is the suboptimal speci-
ficity in distinguishing inflammatory/infectious processes 
from tumour [190].

Clinical indications

According to the available literature, the main clinical indi-
cations in the pediatric population are:

– Assessment of FUO: one challenge in clinical medicine 
is the difficulty in diagnosing fever of unknown origin. 
This entity has varied definitions, ranging from fever last-
ing longer than 1 week that remains unexplained even 
after an extensive work-up in children, to any fever last-
ing 3 weeks. Most often, the etiology is infectious, but 
rheumatologic or neoplastic issues may also give rise to 
this clinical scenario [247]. However, in children with 
FUO, literature about the value of  [18F]FDG PET/CT is 
scarce and the studies included relatively low numbers of 
patients. In a recent study on 110 children, Pijl et al found 
that  [18F]FDG PET/CT is a valuable diagnostic tool in 
the evaluation of children with FUO, since it may detect 
a true underlying cause in almost half (62%) of all cases 
where none was found otherwise [248]. Endocarditis, 
systemic juvenile idiopathic arthritis, and inflammatory 
bowel disorder and cholangitis were the most common 
causes. CRP and leukocyte count seem to be positively 
and negatively associated, respectively, with finding a 
true positive focus of fever on  [18F]FDG PET/CT, which 
may contribute to a priori assessment on the outcome of 
 [18F]FDG PET/CT. Furthermore, pathological findings 
help to direct the therapeutic work-up in these patients 
[249];

– Evaluation of vasculitis: vasculitis can affect arteries 
and veins of any size. In children it is found in condi-
tions such as Henoch-Schonlein purpura, Kawasaki dis-
ease, infantile polyarteritis nodosa, and Takayasu dis-
ease. Diagnosis typically relies on biopsy, conventional 
angiography, ultrasound, or MR angiography. However, 
PET has been shown capable of revealing vasculitis in 
adults [250] and incipient evidence exists on the value 
of PET/CT for assessing active vascular inflammation 
in Takayasu arteritis, the most common granulomatous 
inflammation of large arteries in children. In Takayasu 
arteritis, lack of overt clinical symptoms and the absence 
of currently available reliable serologic biomarkers con-
ceivably contribute a delay in diagnosis.  [18F]FDG PET/
CT in conjunction with MRI offers a promising approach 
in assessing inflammatory activity within the vasculature 
prior to the development of vessel damage (wall thicken-
ing, dilatation/aneurysm, stenosis, occlusion) and there is 
accumulating evidence supporting the role and the utility 
of PET/MRI as the best hybrid system in characterizing 
disease [251];

– Assessment of peripheral OM: patients with acute OM 
can present with a variety of symptoms that are influ-
enced by the age of the child and causative pathogen. 
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Moreover, multifocal involvement is more frequently pre-
sent in particular in newborns.  [18F]FDG PET/CT have 
a major advantage of assessing the whole body in one 
imaging session to confirm or exclude multifocal involve-
ment [252]. Gram-positive bacteria, especially Staphylo-
coccus aureus and Streptococcus pyrogens, are by far the 
most common pathogens and account for 80%–90% of 
the cases. Kingelle kingae, a Gram-negative bacterium, 
is a causative organism for osteoarticular infections and 
is mainly present in younger children [253].  [18F]FDG 
PET/CT is the radionuclide modality of choice in the 
evaluation of spinal OM, in occult bacterial infections, 
and when hematogenous spread is suspected [5];

–  IBD: in children, CD and UC account for the vast major-
ity of inflammatory bowel disease. Imaging is used not 
only to diagnose but also to assess disease extent, detect 
and characterize complications, and differentiate active 
from quiescent diseases. Studies of  [18F]FDG PET/CT in 
children with inflammatory bowel disease have demon-
strated high sensitivity, specificity, and accuracy of this 
non-invasive technique [254, 255]. Furthermore,  [18F]
FDG PET/MRI has several advantages over  [18F]FDG 
PET/CT in children with inflammatory bowel disease, 
including providing better anatomical and soft tissue 
detail, the benefit of functional magnetic resonance dif-
fusion weighted imaging, as well as apparent diffusion 
coefficient maps, and a lower patient radiation exposure 
[252].

Although, still requiring further evidence,  [18F]FDG PET/
CT imaging appears to be indicated in other diseases, such 
as:

– Fungal infection, mainly for defining the best location 
for biopsy and to detect all infectious sites in the body, 
to evaluate response to therapy and to help in therapy 
decision-making on whether to stop, continue, or modify 
treatment [256].

– Detection of infective foci related to assistive devices or 
valvular prosthesis and diagnosis or exclusion of myocar-
ditis in patients treated for a variety of congenital heart 
diseases [257].

– Juvenile autoimmune diabetes or T1D is an autoimmune 
disease characterized by the disruption of pancreatic 
β-cells that are responsible for insulin secretion [258].

Interpretation criteria

Correct interpretation requires accurate knowledge of physi-
ological  [18F]FDG distribution. Furthermore, children may 
present physiologic  [18F]FDG uptake in the thymus and in 
the brown fat (e.g. in case of low temperature in the waiting 
room).

Any focal radiopharmaceutical uptake in the bone should 
be considered suspicious although bone marrow uptake can 
be noticed in patients with inflammatory disease or infec-
tion. Knowledge of any tumour disease in patient history 
is mandatory for a correct interpretation. Indeed, a direct 
association has been shown between bone marrow glucose 
uptake and host systemic inflammation in cancer patients 
[259]. Furthermore, a diffusedly increased bone marrow 
FDG uptake can be present in patients due to increased 
hematopoiesis following administration of granulocyte-
colony stimulating factors [260].

Likewise, evaluation of any uptake in the spleen should 
be approached cautiously with knowledge of full medical 
history (including previous medication: i.e. recent cytokine 
administration). Diffused spleen uptake may reflect activa-
tion of B-cells, which may be associated to many inflamma-
tory diseases [261]. Interpretation may be done visually and/
or assisted by quantitative analysis recording SUV.

In conclusion, the role of  [18F]FDG PET/CT still needs 
to be fully investigated in pediatric patients undergoing the 
scan to assess inflammatory or infectious diseases.  [18F]FDG 
PET/CT may be used with optimized protocol to reduce 
radiation doses in children. With the increase of the studies 
in literature, the use of  [18F]FDG PET/CT will also increase 
in the clinical practice in the next years.

Future perspectives and new trends

Beyond  [18F]FDG PET/CT, also PET/MRI may play a future 
role in the assessment of inflammatory and infectious dis-
eases in children. At the moment, there are few studies docu-
menting the value of this imaging method in children and 
young adults. Furthermore PET/MRI should be compared in 
head-to-head studies to assess the diagnostic gain compared 
to PET/CT.

Patient preparation

The list below includes several general considerations for 
all patients:

– [18F]FDG-PET/CT is contraindicated in case of preg-
nancy.

– Recommendations regarding breastfeeding are reported 
in the ICRP [27, 262].

– Patients are recommended to fast at least 6 h before the 
administration of [18F]FDG [27].

– Patients should drink 0.5–1 L of water (or receive non-
glucose containing fluid intravenously) in the 2 h before 
[18F]FDG PET/CT to increase renal excretion of radiop-
harmaceutical agent [143].

– In diabetic patients treated with insulin, [18F]FDG 
should be administrated at least 4 h after the last rapid-
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acting insulin dose [27] or 6 h after the last short-acting 
dose and no intermediate or long-acting insulin on the 
day [18F]FDG PET/CT is performed. Use of metformin 
may increase FDG uptake of the gastrointestinal tract 
but does not necessarily have to be stopped before scan 
[143].

– Blood glucose levels < 11  mmol/L (< 180  mg/dL) 
should be indicated, although, high blood glucose level 
in unstable or poorly controlled diabetes is not an abso-
lute contraindication to the exam [263].

– When intensive care unit (ICU) patients are scheduled 
for [18F]FDG PET/CT, doctors should ensure that all 
sources of glucose or carbohydrates are timely stopped 
before scan (glucose infusions, parenteral nutrition, 
etc.) [143].

– The discontinuance of corticosteroids is recommended, 
after clinical evaluation, particularly for LVV [3, 27].

– Avoid strenuous physical activities for 24 h before  [18F]
FDG administration [98].

– Relax in an adequately temperature-controlled room 
[20–22  °C (68–71.6  °F)] to minimize physiologic 
uptake in muscles and brown fat at the moment of and 
after administration of  [18F]FDG [98]. In some cases, 
 [18F]FDG uptake in brown fat could be reduced by 
beta-blocking drugs (e.g. orally administered 20 mg 
propranolol 1 h before  [18F]FDG injection) [98].

– In case of SI, DF and OM, discontinuance of antibiotic 
therapy is not necessary, although it is important to 
know its last administration time.

– For the evaluation of post-surgical SI, it is recom-
mended to perform  [18F]FDG-PET/CT after at least 
4 months after surgery (to avoid false-positive findings) 
[3].

Considerations for specific conditions:

– In oncologic patients, in case of suspected SI,  [18F]FDG-
PET/CT should be performed at least 1 month after the 
end of chemotherapy [3].

– For patients with suspected IE, CIED, LVAD and CS a 
high-fat–enriched diet lacking carbohydrates for 12–24 h 
prior to the exam associated with a prolonged fasting 
period (12–18 h) is necessary. For the same purpose, the 
intravenous heparin use (50 IU/kg) about 15 min before 
 [18F]FDG administration may also be used [110].

– In case of SARS-COV-2 every step of the patient flow 
at all levels including arrival, waiting area, during the 
injection and scan and the return home should be man-
aged in concordance with the operational guidelines for 
the management of diagnostic activities and patients in 
the nuclear medicine departments recommended by the 
EANM [264] and by the American College of Nuclear 
Medicine [265].

– In patients with IBD the administration of high quantity 
of fluids could be useful to obtain a proper distension of 
bowel segments. A previous medical therapy with rifaxi-
mine for 2 days before PET scan could allow an adequate 
intestinal cleanse, reducing unspecific  [18F]FDG uptake 
[225, 266].

– For PET/MRI the patient preparation is similar to those 
undergoing  [18F]FDG PET/CT, in accordance with the 
European guidelines [267, 268]. Careful attention should 
be paid to the presence of metal objects or incompatible 
devices in the patient, due to the strong magnetic field (3 
T). Table 3 reports the contraindications to MR exami-
nation. In case of doubts about the compatibility of the 
devices with PET/MR, the following website http:// www. 
mrisa fety. com can be consulted.

– In pediatric patients all the above rules, according 
to pathology, should be followed. Limiting the use of 
mobile devices for playing is important [269].  [18F]FDG 
activity should be calculated according to the EANM 
pediatric dosage card [270].

Table 3  Contraindications to PET/MR scan

Potential contraindications to an MR examination [290]

Aneurysm clip(s)
Any metallic fragment or foreign body
Coronary and peripheral artery stents
Aortic stent graft
Prosthetic heart valves and annuloplasty rings
Cardiac occluder devices
Vena cava filters and embolisation coils
Haemodynamic monitoring and temporary pacing devices, eg, Swan–

Ganz catheter
Haemodynamic support devices
Cardiac pacemaker
Implanted cardioverter-defibrillator (ICD)
Retained transvenous pacemaker and defibrillator leads
Electronic implant or device, eg, insulin pump or other infusion pump
Permanent contraceptive devices, diaphragm, or pessary
Cochlear, otologic, or other ear implant
Neurostimulation system
Shunt (spinal or intraventricular)
Vascular access port and/or catheter
Tissue expander (eg, breast)
Joint replacement (eg, hip, knee, etc.)
Any type of prosthesis (eg, eye, penile, etc.)
Tattoo or permanent makeup
Known claustrophobia
Body piercing jewellery
Hearing aid
Renal insufficiency
Known/possible pregnancy or breastfeeding

http://www.mrisafety.com
http://www.mrisafety.com
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Image acquisition

Standardized imaging protocols exist only for IE, CIED, 
LVAD, CS and VGI, where acquisition, reconstruction and 
post-processing pipeline have been recently summarized in 
joint procedural recommendations for cardiovascular imag-
ing [110]. For all the other infective and inflammatory dis-
orders, the same acquisition, reconstruction and post-pro-
cessing steps described in the EANM procedural guidelines 
for tumour imaging and for inflammations and infections are 
recommended [27, 268].

The administered activity of  [18F]FDG is approximately 
2.5–5 MBq/kg according to available device [27]. Whole-
body PET/CT acquisitions should start approximately 
50–60 min after injection, and they are performed from base 
of skull to mid-thigh by placing patient in supine position 
with raised arms. The study may be completed by a late and 
focussed acquisition of the suspected field of interest, and it 
could be extended to feet in selected patients (i.e., in patients 
with DF, FUO or systemic infections to detect occult foci 
of infection).

For imaging IE, CIED, LVAD, CS and VGI, the admin-
istration of iodinated contrast may be useful to obtain a full 
diagnostic CT scan.

A dual time acquisition has been proposed for several 
clinical indications:

– For imaging SI;
– For differentiating infections from malignancies or 

infected from non-infected fractures [271];
– In HIV-positive patients;
– For increasing T/B and contrast resolution in LVV and 

IE.

However, the performance, overall reliability and useful-
ness of dual time point imaging has mixed results, limit-
ing its routine clinical use for evaluating incidental foci of 
uptake on  [18F]FDG PET/CT [272].

If the scan is performed for therapy evaluation of long-
term follow-up, it is important to apply the same interval 
from injection to image acquisition of the basal study, to 
make  SUVmax measurements more comparable to each other.

Imaging acquisition protocols of PET/MRI for each clini-
cal indication are reported in (Table 4).

Possible pitfalls

Due to the low specificity of  [18F]FDG in differentiating an 
infection from an acute/chronic sterile inflammation and the 
lack of standardized interpretation criteria, several pitfalls 
should be considered.

In SI, false-positive results are possible in case of inflam-
matory or degenerative disc disease, bone tumours and 
metastases, recent vertebral fractures and post-operative 
inflammation [273].

In spondylodiscitis, the presence of erosive osteochon-
drosis can show focally elevated  [18F]FDG uptake as well 
as hyperintense T2-weighted and hypointense T1-weighted 
MR signals; however, these MR signal patterns can also be 
found in inflammatory processes and degenerative diseases 
(i.e. degenerative disk space narrowing) [274].

In DF, the presence of concomitant orthopedic comor-
bidities, for example pre-existing fractures, degenerative 
arthrosis, gout or other form of arthritis, could show intense 
uptake of  [18F]FDG, thus representing a possible source of 
misdiagnosis. Moreover, another important diagnostic chal-
lenge is represented by Charcot osteoarthropathy. This com-
plication is characterized by intense and diffused uptake of 
 [18F]FDG, mainly at mid-hindfoot, that does not allow to 
determine if there is or not a superimposed infection (Fig. 3). 
Indeed, in these cases, a radiolabeled WBC scintigraphy in 
combination with bone marrow scan is more appropriate 
[17, 20, 22].

Same applies for OM in general, and after surgery in 
particular, non-specific  [18F]FDG uptake can be found in 
healing tissues and may last for months after the interven-
tion. Bone fractures may also show  [18F]FDG positivity for 
1–2 years, as well as degenerative changes. A cause of false-
positive  [18F]FDG uptake in patients with metallic implants 
might be explained by high glucose metabolism in the joint 
capsule and around the prosthesis neck, caused by inflam-
mation due to granulomatous foreign body reaction against 
polyethylene debris particles [1].

For LVV, diagnostic accuracy of PET/CT declines by 
nearly 50% after the start of steroid or immunosuppressive 
treatments.  SUVmax reduction is notable 3 months after treat-
ment, while no more reduction between 3 and 6 months after 
the end of the therapy is appreciable [51, 275]. Minimal 
persistent inflammation of the vessel wall after treatment, 
vascular remodelling, and resistance to treatment (similar to 
what happens for antibiotics) are possible hypothesis. False 
positive results mainly due to increased  [18F]FDG uptake in 
macrophage-rich areas in atherosclerotic plaques and low 
spatial resolution of PET and PET/CT scanners actually 
employed, can be possible limitations [276].

In case of VGI,  [18F]FDG uptake may be observed also 
in non-infected graft for many years after surgery and it 
may depend on type of graft material (Dacron prosthesis 
usually show higher uptake than Goretex), type of sur-
gery (open surgery or endovascular approach) and patient 
variability [277]. Therefore, when interpreting a  [18F]
FDG PET/CT scan is very important to carefully review 
patient history and comorbidities. Indeed, other diseases 
may interfere with a correct interpretation, for example, 
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venous thrombosis, vasculitis or RF could cause misdiag-
nosis. Old peri-prosthetic blood collections infiltrated by 
macrophages can also give false-positive results due to 
the high glicometabolic activity of these cells. Moreover, 
 [18F]FDG-avid processes that are close to the graft and 
show an overlap on the graft itself, for example, extra-bone 
spondylodiscitis or psoas abscesses or in general infective/
inflammatory processes of surrounding soft tissues, could 
be wrongly interpreted as positive findings. Moreover, 
despite the focal pattern being considered, at the moment, 
the best criterion to diagnose an infection, in an entirely 
infected device this criterion cannot be applied. Finally, 
efforts should be directed to limit artifact movements.

False-negative results are possible in case of infection 
with low-virulence bacteria, previous antimicrobial ther-
apy, epidural abscesses or extensive vertebral arthrodesis 
[273].

Possible pitfalls in case of IE, CIED, LVAD, CS can be 
summarized as follows:

– Surgical adhesives and post-operative inflammation can 
result in false-positive findings soon after valve surgery.

– Post-operative inflammation may also result in falsely 
positive scan depending on the level of risk for infection 
[263]; in non-complicated valve surgery, scans < 3 weeks 
surgery can be considered.

Table 4  Imaging acquisition protocols for PET/MR

MPRAGE magnetization-prepared rapid acquisition with gradient-echo, FLAIR fluid-attenuated inversion recovery, SWI susceptibility weighted-
imaging, STIR short-tau inversion recovery, TSE turbo spin-echo, VIBE volume interpolated breath-hold examination, HASTE half Fourire 
acquisition single shot turbo spin echo, DWI diffusion weighted imaging, TrueFISP fast imaging with steady state procession, TIRM turbo inver-
sion recovery magnitude, PSIR phase-sensitive version recovery

Clinical indication, ref PET protocol MR protocol

Limbic encephalitis, 1 Brain: one bed position for 20 min (static)
Whole-body: 4 min/bed

Head and neck radiofrequency coil
Brain sequences:
T1-MPRAGE
FLAIR
SWI
STIR TSE
T2-TSE
c.e. MPRAGE
Whole-body sequences:
T1-VIBE
T2-HASTE
DWI
c.e. T1-VIBE
Contrast enhancement: gadobutrol (0.2 mmol/kg b.w.)

Spondylodiscitis, 2 Whole-body: 5-min/bed Integrated spine coil
Spine:
T1-weighted TSE sagittal
T2-weighted TSE transverse
T1-weighted TSE transverse
Whole-body sequences:
T1-VIBE
T2-HASTE
Contrast enhancement: gadobutrol (0.1 mmol/kg b.w.)

Cardiac sarcoidosis, 3,4 Thoracic: one bed of 25 min centred over the heart 
(static)

Thoracic sequences:
T2-weighted coronal
T2- HASTE
Breath-hold cine imaging with TrueFISP and TIRM
Late gadolinium-enhanced (15 min following admin-

istration of c.e.)
PSIR
Contrast enhancement: gadobutrol (0.1 mmol/kg b.w.)

Large vessels vasculitis and retrop-
eritoneal fibrosis, 5–7

Whole-body: 4 min/bed Whole-body sequences:
T1-VIBE
T2-HASTE
STIR
DWI (only for retroperitoneal fibrosis)
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– Incomplete myocardial suppression of  [18F]FDG (scarce 
fasting time before PET).

– Lipomatous hypertrophy of the interatrial septum.
– [18F]FDG-avid processes close to the graft but not involv-

ing the device.
– Primary cardiac tumours and cardiac metastasis.
– Libman-Sacks endocarditis.
– Post-surgical sterile inflammation (i.e., foreign body 

reaction).
– Artifacts caused by device.

False increase of  [18F]FDG uptake in RPF may be related 
to beam-hardening artifact, which should not be overlooked 
since many patients have vascular calcifications [278].

All pitfalls mentioned can occur, since a reason for FUO 
can be any of the other inflammatory/infective disorders 
mentioned in this paper.

Sarcoidosis and pulmonary tuberculosis lesions are quite 
morphologically heterogeneous. They may appear as nodu-
lar, micro-nodular, mass or sub-solid opacity and it can be 
very difficult to differentiate from lung carcinoma [151, 161, 
279]. SUV measurements from both active granulomatous 
diseases and malignant lesions can be similarly high with 
significant overlap.  [18F]FDG PET/CT does not reliably 
distinguish between granulomatous active and malignant 
lesions [150]. The suspicion of lymphoma should be consid-
ered in presence of intrathoracic or abdominal metabolically 
active lymphadenopathies.

In search of IFI, the most common challenge in evaluating 
a  [18F]FDG PET/CT scan, is the presence of potential causes 
of false-negative results, such as: lesion size, low metabolic 
rate, hyperglycemia, lesions masked by adjacent high physi-
ologic uptake, concomitant drug use interfering with uptake, 
such as ongoing steroid therapy in systemic disorders. Also, 
the presence of potential causes of false-positive results, 
should be considered, such as: injection artifacts and exter-
nal contamination, reconstruction artifacts from attenuation 
correction, normal physiologic uptake, pathologic uptake 
not related to IFI, such as neoplasia or other infection [27]. 
Main limitation in evaluating IFI is the absence of a vali-
dated  SUVmax cut-off or other parameters to differentiate 
malignant lesions from fungal lesions [188]. In HIV-positive 
patients special care must be taken in evaluating  [18F]FDG 
PET/CT because persistent generalized lymphadenopathy 
and benign hypermetabolic foci are common, especially in 
the context of high viremia, and can lead to false-positive 
interpretations of malignancy [198].

Potential pitfalls for SARS-CoV-2 patients are drug-
induced interstitial pneumonia (everolimus, nivolumab), or 
interstitial pneumonias of different etiologies, responsible 
for similar PET/CT pattern [280].

Interestingly, some studies [281, 282] have reported that 
the lung inflammatory burden in COVID-19 infection is 

characterized by fluoro-choline uptake. It has been specu-
lated that the systemic hyper-inflammation (also defined 
as macrophage activation syndrome), or cytokine storm, 
requires an increase in choline consumption to synthesize 
phosphatidylcholine and stimulate phagocytosis, organelle 
biogenesis, secretory functions, and endocytosis; as a con-
sequence, 18F-Fluorocholine that is a synthetic analogue 
of the naturally choline, could be useful in the detection 
and quantification of the macrophage activity in pulmonary 
interstitial infiltrates of Covid-19 pneumonia. Also, mild 
68Ga-PSMA-11 mild uptake has been identified in corre-
spondence with peripheral ground-glass opacities of both 
lungs in a prostate cancer patient, as reported by Stasiak 
et al. [283].

In patients with IBD, false-positive cases can occur 
in normal bowel (for high turnover of intestinal mucosa, 
increased peristaltic activity of muscular layer and collapse 
of bowel loops) and in diabetic patients assuming hypogly-
cemic oral therapy, in diverticulitis, in infectious colitis or 
in case of malignancies [194, 225, 226, 284].

False-negative cases can occur in disease with a low-
grade activity and in case of recent administration of high 
dose of corticosteroid [224, 226, 285].

In pediatric patients, false-positive  [18F]FDG uptake has 
been described in brain or the genitourinary system as well 
as false-negative  [18F]FDG PET/CT in urinary tract infec-
tion has been described [286]. Gastrointestinal and reactive 
lymph nodes may also cause false-positive findings. Special 
attention should be paid to  [18F]FDG-avid pitfalls, includ-
ing non-ossifying fibroma, fractures and muscular distortion 
[287–289].

Finally, when  [18F]FDG PET/CT is performed on patients 
with kidney and/or liver failure, scan potentially results in 
reduced background clearance, reduced metabolism of FDG, 
and poor image quality [143].

Most common  [18F]FDG PET/CT pitfalls imaging in 
inflammation and infections are shown in Supplementary 
Table 1.

PET reporting

As a general rule,  [18F]FDG PET/CT should be reported 
according to the specific interpretation criteria adopted for 
each clinical indication.

Images should be described in terms of both anatomical 
and functional/metabolic point of view and should be cor-
related with patient’s clinical signs as far as possible.

The following common scheme of reporting  [18F]FDG 
PET/CT should be applied to all the clinical indications:

1. Personal data (patients’ name, date of birth, medical 
record number, date of  [18F]FDG PET/CT execution).
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2. Anamnestic information (clinical history, comorbidities, 
previous surgery, diagnostic tests and ongoing treat-
ments).

3. Technical data (radiopharmaceutical, dose, type of cam-
era, the interval between  [18F]FDG injection and the 
images acquisition).

4. Description of findings:

– Presence/absence of lesion/s;
– Pattern of uptake (focal vs diffused, homogeneous vs 

non-homogeneous, continuous vs discontinuous for 
IBD);

– Location;
– Extent (in case of involvement of contiguous soft 

tissues or regional lymph-nodes);
– Evaluation of CT component: in particular in VGI 

where the graft borders and other radiological signs 
of infection, such as dislocation of the graft or pres-
ence of gas, should also be reported;

– Intensity of uptake by  SUVmax evaluation: this could 
be reported, not for diagnostic purposes but to pro-
vide a reference parameter for further PET studies 
that will be performed for therapy evaluation or 
long-term follow-up. To this purpose, it is important 
to clearly mention the precise timing between  [18F]
FDG injection and images acquisition and to indi-
cate the type of tomograph, since both these aspects 
could have a great influence on  SUVmax calcula-
tion, thus making this parameter not comparable. In 
some clinical indications, the report should include 
specific scores (i.e. for SI, LVV and retroperitoneal 
fibrosis), as reported in the specific paragraphs on 
imaging interpretation.

5. Possible differential diagnosis.
6. Comparison with previous  [18F]FDG PET/CT or PET/

MRI if performed.
7. Conclusions: in this section should be indicated the most 

probable diagnosis based on the specific interpretation 
of the findings. It would also eventually recommend fol-
low-up or integration with additional imaging or labora-
tory tests for the confirmation or exclusion of diagnosis.

Discussion

Several considerations can be drawn from this paper. First 
of all, we noted that the clinical applications of FDG in 
the field of inflammatory and infective diseases is rap-
idly expanding. In some diseases,  [18F]FDG shows clear 
superiority over other nuclear medicine modalities (i.e., 
WBC scan or anti-granulocyte antibody scan) such as for 
SI, LVV, EI, RF, sarcoidosis and FI. The main reasons 

are: (1) the histopathological features of the diseases and 
(2) the availability of well-established image interpreta-
tion criteria. For other pathologies, such as IBD, VGI, 
OM, DFI and FUO,  [18F]FDG shows some limitations. 
Finally, in some cases such as PJI, early post-operative 
VGI, high pre-test probability of infection in patients with 
FUO, post-operative evaluation of CD, brain abscesses and 
fracture-related infections with metal fixators,  [18F]FDG 
has a limited role, while WBC should be preferred due to 
its higher diagnostic accuracy.

In some other pathologies, such us SARS-Cov-2 infec-
tions, HIV infections and tuberculosis, the role of  [18F]
FDG is still unclear, and it may be employed only in spe-
cific settings.

Moreover, several rheumatic diseases such as rheuma-
toid arthritis, Sjogren syndrome, Bechet diseases, and oth-
ers, have not been mentioned in the present article due to 
the paucity of available scientific evidence.

The most important aspect is that, for many of the dis-
eases, there is either not well-established image interpreta-
tion criteria, nor relevant scientific publications compar-
ing  [18F]FDG PET/CT with other radiological or nuclear 
medicine imaging modalities. Moreover, the standard of 
references, such as histological confirmation, is often poor.

Conclusions

In conclusion, the use of  [18F]FDG is rapidly expanding 
in the field of inflammation/infection imaging. However, 
for most diseases there still lacks the publication of large 
case–control, multicentric studies with appropriate gold 
standard, to correctly define the clinical role of  [18F]FDG 
and standardize image interpretation criteria.
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