18 research outputs found

    Calidad de sentencias sobre el proceso penal del delito de lesiones leves, en el expediente N.º 02696 –2014 – 0- 0501 – JR -PE-01, Del Distrito Judicial De Ayacucho – Huamanga, 2019

    Get PDF
    La presente investigación de la calidad de sentencia sobre el proceso penal deldelito de lesiones leves, en el expediente N.º 02696- 2014 -0- 0501 -JR-PE- 01, del Distrito Judicial de Ayacucho-Huamanga 2019, busca cooperar en la mejora de la calidad de las sentencias judiciales, para ello, siguiendo la línea de investigación científica señalada por Reglamento de Investigación de la Universidad, se basó en el análisis de las sentencias de un proceso culminado, con el objetivo de determinar su calidad, basándose en la norma, la doctrina y la jurisprudencia pertinente como parámetros. La metodología empleada fue: tipo de investigación fundamental o básica;nivel descriptivo; diseño no experimental, retrospectivo y trasversal; y de enfoque cualitativo. El expediente, objeto de recolección de datos por medio de la técnica de observación y el análisis de contenido, fue seleccionada a través de la técnica de muestreo por conveniencia. Para luego ser estudiado con la ayuda del instrumento de lista de cotejo del cuadro de operacionalización de variables. El análisis de resultadosreveló que la calidad de la sentencia, emitida en primera instancia, fue muy alta y la calidad de la sentencia de vista fue alta.Tesi

    Preparation of Continuous Highly Hydrophobic Pure Silica ITQ-29 Zeolite Layers on Alumina Supports

    Full text link
    [EN] The preparation of continuous layers of highly hydrophobic pure silica ITQ-29 zeolite, potentially applicable as hydrophobic membranes for separation of molecules based on their polarity, has been investigated. Continuous layers of intergrown ITQ-29 zeolite crystals were successfully grown on porous alumina supports by optimization of the synthesis conditions, such as the appropriate selection of the seeds, the procedure for the gel preparation, and the calcination conditions. This resulted in the formation of all silica ITQ-29 zeolite layers without the presence of germanium required in previously reported ITQ-29 membranes, with the subsequent improvement in quality and stability, as verified by the absence of cracks after calcination. We have proved that the incorporation of aluminum from the support into the zeolite layer does not occur, neither during the secondary growth nor through migration of aluminum species during calcination.This research was funded by the European Research Council, grant ERC-AdG-2014-671093 (SynCatMatch) and the Spanish Government, through "Severo Ochoa" grant SEV-2016-0683 and RTI2018-101784-B-I00.Palomino Roca, M.; Ono, H.; Valencia Valencia, S.; Corma Canós, A. (2020). Preparation of Continuous Highly Hydrophobic Pure Silica ITQ-29 Zeolite Layers on Alumina Supports. Molecules. 25(18):1-13. https://doi.org/10.3390/molecules25184150S1132518Mascal, M. (2012). Chemicals from biobutanol: technologies and markets. Biofuels, Bioproducts and Biorefining, 6(4), 483-493. doi:10.1002/bbb.1328Ndaba, B., Chiyanzu, I., & Marx, S. (2015). n-Butanol derived from biochemical and chemical routes: A review. Biotechnology Reports, 8, 1-9. doi:10.1016/j.btre.2015.08.001Huang, H.-J., Ramaswamy, S., & Liu, Y. (2014). Separation and purification of biobutanol during bioconversion of biomass. Separation and Purification Technology, 132, 513-540. doi:10.1016/j.seppur.2014.06.013Barton, W. E., & Daugulis, A. (1992). Evaluation of solvents for extractive butanol fermentation with Clostridium acetobutylicum and the use of poly(propylene glycol) 1200. Applied Microbiology and Biotechnology, 36(5). doi:10.1007/bf00183241Raganati, F., Procentese, A., Olivieri, G., Russo, M. E., Salatino, P., & Marzocchella, A. (2020). Bio-butanol recovery by adsorption/desorption processes. Separation and Purification Technology, 235, 116145. doi:10.1016/j.seppur.2019.116145Xue, C., Zhao, J.-B., Chen, L.-J., Bai, F.-W., Yang, S.-T., & Sun, J.-X. (2014). Integrated butanol recovery for an advanced biofuel: current state and prospects. Applied Microbiology and Biotechnology, 98(8), 3463-3474. doi:10.1007/s00253-014-5561-6Sadrimajd, P., Rene, E. R., & Lens, P. N. L. (2019). Adsorptive recovery of alcohols from a model syngas fermentation broth. Fuel, 254, 115590. doi:10.1016/j.fuel.2019.05.173Qureshi, N., Hughes, S., Maddox, I. S., & Cotta, M. A. (2005). Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess and Biosystems Engineering, 27(4), 215-222. doi:10.1007/s00449-005-0402-8Milestone, N. B., & Bibby, D. M. (1981). Concentration of alcohols by adsorption on silicalite. Journal of Chemical Technology and Biotechnology, 31(1), 732-736. doi:10.1002/jctb.280310198http://www.iza-structure.org/databases/Weckhuysen, B. M., & Yu, J. (2015). Recent advances in zeolite chemistry and catalysis. Chemical Society Reviews, 44(20), 7022-7024. doi:10.1039/c5cs90100fDusselier, M., & Davis, M. E. (2018). Small-Pore Zeolites: Synthesis and Catalysis. Chemical Reviews, 118(11), 5265-5329. doi:10.1021/acs.chemrev.7b00738Rangnekar, N., Mittal, N., Elyassi, B., Caro, J., & Tsapatsis, M. (2015). Zeolite membranes – a review and comparison with MOFs. Chemical Society Reviews, 44(20), 7128-7154. doi:10.1039/c5cs00292cKorelskiy, D., Leppäjärvi, T., Zhou, H., Grahn, M., Tanskanen, J., & Hedlund, J. (2013). High flux MFI membranes for pervaporation. Journal of Membrane Science, 427, 381-389. doi:10.1016/j.memsci.2012.10.016Negishi, H., Sakaki, K., & Ikegami, T. (2010). Silicalite Pervaporation Membrane Exhibiting a Separation Factor of over 400 for Butanol. Chemistry Letters, 39(12), 1312-1314. doi:10.1246/cl.2010.1312Ueno, K., Negishi, H., Okuno, T., Tawarayama, H., Ishikawa, S., Miyamoto, M., … Oumi, Y. (2019). Effects of seed crystal type on the growth and microstructures of silicalite-1 membranes on tubular silica supports via gel-free steam-assisted conversion. Microporous and Mesoporous Materials, 289, 109645. doi:10.1016/j.micromeso.2019.109645Elyassi, B., Jeon, M. Y., Tsapatsis, M., Narasimharao, K., Basahel, S. N., & Al-Thabaiti, S. (2015). Ethanol/water mixture pervaporation performance of b -oriented silicalite-1 membranes made by gel-free secondary growth. AIChE Journal, 62(2), 556-563. doi:10.1002/aic.15124Lan, J., Saulat, H., Wu, H., Li, L., Yang, J., Lu, J., & Zhang, Y. (2020). Manipulation on microstructure of MFI membranes by binary structure directing agents. Microporous and Mesoporous Materials, 299, 110128. doi:10.1016/j.micromeso.2020.110128Ueno, K., Yamada, S., Negishi, H., Okuno, T., Tawarayama, H., Ishikawa, S., … Oumi, Y. (2020). Fabrication of pure-silica *BEA-type zeolite membranes on tubular silica supports coated with dilute synthesis gel via steam-assisted conversion. Separation and Purification Technology, 247, 116934. doi:10.1016/j.seppur.2020.116934Kida, K., Maeta, Y., & Yogo, K. (2018). Pure silica CHA-type zeolite membranes for dry and humidified CO2/CH4 mixtures separation. Separation and Purification Technology, 197, 116-121. doi:10.1016/j.seppur.2017.12.060Imasaka, S., Nakai, A., Araki, S., & Yamamoto, H. (2018). Synthesis and Gas Permeation Properties of STT-type Zeolite Membranes. Journal of the Japan Petroleum Institute, 61(5), 263-271. doi:10.1627/jpi.61.263Reed, T. B., & Breck, D. W. (1956). Crystalline Zeolites. II. Crystal Structure of Synthetic Zeolite, Type A. Journal of the American Chemical Society, 78(23), 5972-5977. doi:10.1021/ja01604a002Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909García, E. J., Pérez-Pellitero, J., Pirngruber, G. D., Jallut, C., Palomino, M., Rey, F., & Valencia, S. (2014). Tuning the Adsorption Properties of Zeolites as Adsorbents for CO2 Separation: Best Compromise between the Working Capacity and Selectivity. Industrial & Engineering Chemistry Research, 53(23), 9860-9874. doi:10.1021/ie500207sPalomino, M., Corma, A., Rey, F., & Valencia, S. (2009). New Insights on CO2−Methane Separation Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs. Langmuir, 26(3), 1910-1917. doi:10.1021/la9026656Van der Perre, S., Gelin, P., Claessens, B., Martin-Calvo, A., Cousin Saint Remi, J., Duerinck, T., … Denayer, J. F. M. (2017). Intensified Biobutanol Recovery by using Zeolites with Complementary Selectivity. ChemSusChem, 10(14), 2968-2977. doi:10.1002/cssc.201700667Serrano, D. P., Calleja, G., Botas, J. A., & Gutierrez, F. J. (2007). Characterization of adsorptive and hydrophobic properties of silicalite-1, ZSM-5, TS-1 and Beta zeolites by TPD techniques. Separation and Purification Technology, 54(1), 1-9. doi:10.1016/j.seppur.2006.08.013Zhang, K., Lively, R. P., Noel, J. D., Dose, M. E., McCool, B. A., Chance, R. R., & Koros, W. J. (2012). Adsorption of Water and Ethanol in MFI-Type Zeolites. Langmuir, 28(23), 8664-8673. doi:10.1021/la301122hDemontis, P., Stara, G., & Suffritti, G. B. (2003). Behavior of Water in the Hydrophobic Zeolite Silicalite at Different Temperatures. A Molecular Dynamics Study. The Journal of Physical Chemistry B, 107(18), 4426-4436. doi:10.1021/jp0300849Tiscornia, I., Valencia, S., Corma, A., Téllez, C., Coronas, J., & Santamaría, J. (2008). Preparation of ITQ-29 (Al-free zeolite A) membranes. Microporous and Mesoporous Materials, 110(2-3), 303-309. doi:10.1016/j.micromeso.2007.06.019Hunt, H. K., Lew, C. M., Sun, M., Yan, Y., & Davis, M. E. (2010). Pure-silica zeolite thin films by vapor phase transport of fluoride for low-k applications. Microporous and Mesoporous Materials, 128(1-3), 12-18. doi:10.1016/j.micromeso.2009.07.023Fernández-Barquín, A., Casado-Coterillo, C., Palomino, M., Valencia, S., & Irabien, A. (2016). Permselectivity improvement in membranes for CO2/N2 separation. Separation and Purification Technology, 157, 102-111. doi:10.1016/j.seppur.2015.11.032Casado-Coterillo, C., Fernández-Barquín, A., Valencia, S., & Irabien, Á. (2018). Estimating CO2/N2 Permselectivity through Si/Al = 5 Small-Pore Zeolites/PTMSP Mixed Matrix Membranes: Influence of Temperature and Topology. Membranes, 8(2), 32. doi:10.3390/membranes8020032Fernández-Barquín, A., Casado-Coterillo, C., Palomino, M., Valencia, S., & Irabien, A. (2015). LTA/Poly(1-trimethylsilyl-1-propyne) Mixed-Matrix Membranes for High-Temperature CO2/N2Separation. Chemical Engineering & Technology, 38(4), 658-666. doi:10.1002/ceat.201400641Baerlocher, C., & McCusker, L. B. (1994). Practical Aspects of Powder Diffraction Data Analysis. Studies in Surface Science and Catalysis, 391-428. doi:10.1016/s0167-2991(08)60775-2White, J., Dutta, P. K., Shqau, K., & Verweij, H. (2008). Synthesis of zeolite L membranes with sub-micron to micron thicknesses. Microporous and Mesoporous Materials, 115(3), 389-398. doi:10.1016/j.micromeso.2008.02.012Lee, J. S., Kim, J. H., Lee, Y. J., Jeong, N. C., & Yoon, K. B. (2007). Manual Assembly of Microcrystal Monolayers on Substrates. Angewandte Chemie International Edition, 46(17), 3087-3090. doi:10.1002/anie.20060436

    One-pot two-step process for direct propylene oxide production catalyzed by bi-functional Pd(Au)@TS-1 materials

    Full text link
    [EN] Different bi-functional materials (Pd(Au)@TS-1) based on metallic nanoparticles supported onto active nanocrystalline titanium silicalite (TS-1) zeolites were synthesized, characterized and used as recyclable heterogeneous catalysts for direct propylene oxide production from hydrogen, oxygen and propylene through one-pot two-step consecutive process. These catalysts allowed carrying out the combined reaction where metallic nanoparticles catalyzed the formation of in situ H2O2 that was the necessary intermediate for propylene epoxidation catalyzed by active TS-1 nanocrystalline support. Several variables were considered such as use of supercritical CO2 conditions, modifiable content of metallic species, and presence of additional co-solvents, surface acidity inhibitors and H2O2 stabilizers. Reusability and stability of the bi-functional catalyst was showed through consecutive catalytic cycles.The research leading to these results has received funding from European Community’s Seventh Framework Programme, through the Collaborative Project INCAS, Contract Nr. NMP2-LA-2010- 245988. Authors thank additional funds from Spanish Government (MAT2014-52085-C2-1-P and Severo Ochoa Excellence Program SEV-2012-0267).Prieto Arnal, A.; Palomino Roca, M.; Díaz Morales, UM.; Corma Canós, A. (2016). One-pot two-step process for direct propylene oxide production catalyzed by bi-functional Pd(Au)@TS-1 materials. Applied Catalysis A: General. 523:73-84. https://doi.org/10.1016/j.apcata.2016.05.019S738452

    Zeolite Rho: a highly selective adsorbent for CO2/CH4 separation induced by a structural phase modification

    Full text link
    [EN] Zeolite Rho is able to successfully separate CO2 from CH4 with the highest selectivity ever observed on the basis of pore diameter and surface polarity. The adsorption of CO2 provokes structural changes in the zeolite Rho.We acknowledge financial support from Spanish CICYT (MAT2009-14528-C02-01, CTQ2010-17988/PPQ) and European Project TopCombi (NMP2-CT2005-515792). M.P. thanks CSIC for a JAE doctoral fellowship. The authors thank the referee for the suggestion to carry out structural studies.Palomino Roca, M.; Corma Canós, A.; Jorda Moret, JL.; Rey Garcia, F.; Valencia Valencia, S. (2012). Zeolite Rho: a highly selective adsorbent for CO2/CH4 separation induced by a structural phase modification. Chemical Communications. 48(2):215-217. doi:10.1039/C1CC16320ES215217482Ruthven, D. M., & Reyes, S. C. (2007). Adsorptive separation of light olefins from paraffins. Microporous and Mesoporous Materials, 104(1-3), 59-66. doi:10.1016/j.micromeso.2007.01.005Jiang, J., Yu, J., & Corma, A. (2010). Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures. Angewandte Chemie International Edition, 49(18), 3120-3145. doi:10.1002/anie.200904016R. T. Yang , Adsorbents: Fundamentals and Applications, John Wiley and Sons, Hoboken, New Jersey, 2003, p. 157S. Sircar and A. L.Myers, Gas separation by zeolites, in Handbook of Zeolite Science and Technology, ed. S. M. Auerbach, K. A. Carrado and P. K. Dutta, 2003, p. 1063R. M. Barrer , Zeolites and Clay Minerals as Sorbents and Molecular Sieves, Academic Press, London, 1978Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909Olson, D. H., Camblor, M. A., Villaescusa, L. A., & Kuehl, G. H. (2004). Light hydrocarbon sorption properties of pure silica Si-CHA and ITQ-3 and high silica ZSM-58. Microporous and Mesoporous Materials, 67(1), 27-33. doi:10.1016/j.micromeso.2003.09.025Zhu, W., Kapteijn, F., & Moulijn, J. A. (1999). Shape selectivity in the adsorption of propane/propene on the all-silica DD3R. Chemical Communications, (24), 2453-2454. doi:10.1039/a906465fPalomino, M., Cantín, A., Corma, A., Leiva, S., Rey, F., & Valencia, S. (2007). Pure silica ITQ-32 zeolite allows separation of linear olefins from paraffins. Chem. Commun., (12), 1233-1235. doi:10.1039/b700358gTijsebaert, B., Varszegi, C., Gies, H., Xiao, F.-S., Bao, X., Tatsumi, T., … De Vos, D. (2008). Liquid phase separation of 1-butene from 2-butenes on all-silica zeolite RUB-41. Chemical Communications, (21), 2480. doi:10.1039/b719463cOlson, D. H., Yang, X., & Camblor, M. A. (2004). ITQ-12:  A Zeolite Having Temperature Dependent Adsorption Selectivity and Potential for Propene Separation. The Journal of Physical Chemistry B, 108(30), 11044-11048. doi:10.1021/jp040216dDenayer, J. F., Souverijns, W., Jacobs, P. A., Martens, J. A., & Baron, G. V. (1998). High-Temperature Low-Pressure Adsorption of Branched C5−C8Alkanes on Zeolite Beta, ZSM-5, ZSM-22, Zeolite Y, and Mordenite. The Journal of Physical Chemistry B, 102(23), 4588-4597. doi:10.1021/jp980674kAmrouche, H., Aguado, S., Pérez-Pellitero, J., Chizallet, C., Siperstein, F., Farrusseng, D., … Nieto-Draghi, C. (2011). Experimental and Computational Study of Functionality Impact on Sodalite–Zeolitic Imidazolate Frameworks for CO2Separation. The Journal of Physical Chemistry C, 115(33), 16425-16432. doi:10.1021/jp202804gWang, B., Côté, A. P., Furukawa, H., O’Keeffe, M., & Yaghi, O. M. (2008). Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature, 453(7192), 207-211. doi:10.1038/nature06900Serra-Crespo, P., Ramos-Fernandez, E. V., Gascon, J., & Kapteijn, F. (2011). Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties. Chemistry of Materials, 23(10), 2565-2572. doi:10.1021/cm103644bTagliabue, M., Farrusseng, D., Valencia, S., Aguado, S., Ravon, U., Rizzo, C., … Mirodatos, C. (2009). Natural gas treating by selective adsorption: Material science and chemical engineering interplay. Chemical Engineering Journal, 155(3), 553-566. doi:10.1016/j.cej.2009.09.010P. A. Barrett and N. A.Stephenson, in Zeolites and Ordered Porous Solids: Fundamentals and Applications, ed. C. Martínez and J. Pérez-Pariente, Editorial Universitat Politècnica de València, Valencia, 2011, p. 149Bonenfant, D., Kharoune, M., Niquette, P., Mimeault, M., & Hausler, R. (2008). Advances in principal factors influencing carbon dioxide adsorption on zeolites. Science and Technology of Advanced Materials, 9(1), 013007. doi:10.1088/1468-6996/9/1/013007Dunne, J. A., Rao, M., Sircar, S., Gorte, R. J., & Myers, A. L. (1996). Calorimetric Heats of Adsorption and Adsorption Isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6on NaX, H-ZSM-5, and Na-ZSM-5 Zeolites. Langmuir, 12(24), 5896-5904. doi:10.1021/la960496rDelgado, J. A., Uguina, M. A., Gómez, J. M., & Ortega, L. (2006). Adsorption equilibrium of carbon dioxide, methane and nitrogen onto Na- and H-mordenite at high pressures. Separation and Purification Technology, 48(3), 223-228. doi:10.1016/j.seppur.2005.07.027Vansant, E. F., & Voets, R. (1981). Adsorption of binary gas mixtures in ion-exchanged forms of mordenite. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 77(6), 1371. doi:10.1039/f19817701371Llewellyn, P. L., & Maurin, G. (2007). Gas Adsorption in Zeolites and Related Materials. Introduction to Zeolite Science and Practice, 555-XVI. doi:10.1016/s0167-2991(07)80805-6Venna, S. R., & Carreon, M. A. (2008). Synthesis of SAPO-34 Crystals in the Presence of Crystal Growth Inhibitors. The Journal of Physical Chemistry B, 112(51), 16261-16265. doi:10.1021/jp809316sPalomino, M., Corma, A., Rey, F., & Valencia, S. (2010). New Insights on CO2−Methane Separation Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs. Langmuir, 26(3), 1910-1917. doi:10.1021/la9026656Moon, J.-H., Bae, Y.-S., Hyun, S.-H., & Lee, C.-H. (2006). Equilibrium and kinetic characteristics of five single gases in a methyltriethoxysilane-templating silica/α-alumina composite membrane. Journal of Membrane Science, 285(1-2), 343-352. doi:10.1016/j.memsci.2006.09.003ROBSON, H. E., SHOEMAKER, D. P., OGILVIE, R. A., & MANOR, P. C. (1973). Synthesis and Crystal Structure of Zeolite Rho—A New Zeolite Related to Linde Type A. Molecular Sieves, 106-115. doi:10.1021/ba-1973-0121.ch009Chatelain, T., Patarin, J., Fousson, E., Soulard, M., Guth, J. L., & Schulz, P. (1995). Synthesis and characterization of high-silica zeolite RHO prepared in the presence of 18-crown-6 ether as organic template. Microporous Materials, 4(2-3), 231-238. doi:10.1016/0927-6513(95)00009-xHimeno, S., Tomita, T., Suzuki, K., & Yoshida, S. (2007). Characterization and selectivity for methane and carbon dioxide adsorption on the all-silica DD3R zeolite. Microporous and Mesoporous Materials, 98(1-3), 62-69. doi:10.1016/j.micromeso.2006.05.018Cavenati, S., Grande, C. A., & Rodrigues, A. E. (2004). Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures. Journal of Chemical & Engineering Data, 49(4), 1095-1101. doi:10.1021/je0498917LI, S. (2004). SAPO-34 membranes for CO2/CH4 separation. Journal of Membrane Science, 241(1), 121-135. doi:10.1016/j.memsci.2004.04.027Van den Bergh, J., Zhu, W., Gascon, J., Moulijn, J. A., & Kapteijn, F. (2008). Separation and permeation characteristics of a DD3R zeolite membrane. Journal of Membrane Science, 316(1-2), 35-45. doi:10.1016/j.memsci.2007.12.051L. B. McCusker and C.Baerlocher, in Proceed. 6th Inter. Zeolite Conf., ed. D. Olson and A. Bisio, Butterworths, 1984, p. 812Corbin, D. R., Abrams, L., Jones, G. A., Eddy, M. M., Harrison, W. T. A., Stucky, G. D., & Cox, D. E. (1990). Flexibility of the zeolite RHO framework: in situ x-ray and neutron powder structural characterization of divalent cation-exchanged zeolite RHO. Journal of the American Chemical Society, 112(12), 4821-4830. doi:10.1021/ja00168a02

    Pure silica ITQ-32 zeolite allows separation of linear olefins from paraffins

    Full text link
    [EN] ITQ-32 is able to separate propene from propane and represents a clear improvement with respect to previous zeolites in achieving the separation of trans-2-butene and 1-butene from the C(4) fraction using only one zeolite.Palomino Roca, M.; Cantin Sanz, A.; Corma Canós, A.; Leiva Herrero, S.; Rey Garcia, F.; Valencia Valencia, S. (2007). Pure silica ITQ-32 zeolite allows separation of linear olefins from paraffins. Chemical Communications. 12:1233-1235. doi:10.1039/b700358gS123312351

    On stability and performance of highly c-oriented columnar AlPO4-5 and CoAPO-5 membranes

    Full text link
    [EN] Continuous films comprised of highly c-oriented aluminophosphate AlPO4-5 or cobalt-substituted AlPO4-5 (CoAPO-5) were grown on porous supports and subjected to heat treatment in order to investigate the potential for membrane applications. A study in the early stages of in-plane crystalline intergrowth revealed a potential mechanism for flake-like crystal formation between the original oriented columnar crystals. Variations in metal substitution (AlPO4-5, CoAPO-5), support (glass, silicon, porous alumina), and calcination method (conventional, rapid thermal processing) were chosen to examine the conditions by which structural integrity was compromised following secondary (or tertiary) growth, resulting in reduced membrane functionality. Through the use of rapid thermal processing, the structure debilitation could be partially avoided. The membrane quality was inspected through pervaporation measurements consisting of a liquid hydrocarbon feed of n-heptane and 1,3,5-triisopropylbenzene. By investigating the effect of template removal on the oriented, columnar crystalline structure, useful insight is provided into the potential for the membranes to participate in applications such as molecular separations, catalysis, or host-guest assemblies. (C) 2011 Elsevier Inc. All rights reserved.Support by the American Chemical Society (ACS-PRF) and the European Community through the FP7 NextGTL project and a Marie Curie International Reintegration Grant (FP7, Grant agreement No. 210947) is greatly appreciated. M.P. thanks CSIC for a JAE doctoral fellowship. We would like to thank Kumar Varoon for assistance with membrane sectioning and imaging using the focused ion beam technique. Parts of this work were carried out in the Characterization Facility on the campus of the University of Minnesota-Twin Cities, which receives partial support from NSF through the MRSEC program.Stoeger, JA.; Veziri, CM.; Palomino Roca, M.; Corma Canós, A.; Kanellopoulos, NK.; Tsapatsis, M.; Karanikolos, GN. (2012). On stability and performance of highly c-oriented columnar AlPO4-5 and CoAPO-5 membranes. Microporous and Mesoporous Materials. 147(1):286-294. https://doi.org/10.1016/j.micromeso.2011.06.028286294147

    Isostructural compartmentalized spin-crossover coordination polymers for gas confinement

    Full text link
    [EN] Here we present two FeII coordination polymers that possess discrete compartments suitable for CO2 physisorption despite the lack of permanent channels. The two crystalline materials, of general formula [Fe(btzbp)3](X)2 (X = ClO4 or BF4), present voids of ca. 250 Å3, which each can accommodate up to two CO2 molecules. The abrupt spin transition can be modified upon CO2 sorption, and different magnetic behaviour is observed depending on the number of molecules sorbed.Financial support from the Spanish MINECO (CTQ2014-59209-P, MAT2014-56143-R and MAT2012-38567-C02-01), the Generalitat Valenciana (Prometeo and ISIC-Nano programs) and the VLC/Campus Program is gratefully acknowledged. We thank the Spanish government for the provision of a Severo Ochoa project (SEV-2012-0267) and a Maria de Maeztu project (MDM-2015-0538). G.M.E. acknowledges the Blaise Pascal International Chair for financial support. M.G.-M. thanks MICINN for a predoctoral FPU grant and the EU for a Marie Sklodowska-Curie postdoctoral fellowship (H2020-MSCA-IF-EF-658224). N.C.G. thanks the Generalitat Valenciana for a Val-i+d predoctoral fellowship. J. M. Martinez-Agudo and G. Agusti from the University of Valencia are gratefully acknowledged for magnetic measurements.Calvo Galve, N.; Giménez-Marqués, M.; Palomino Roca, M.; Valencia Valencia, S.; Rey Garcia, F.; Mínguez Espallargas, G.; Coronado, E. (2016). Isostructural compartmentalized spin-crossover coordination polymers for gas confinement. Inorganic Chemistry Frontiers. 3(6):808-813. https://doi.org/10.1039/C5QI00277JS80881336Hoskins, B. F., & Robson, R. (1989). Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. Journal of the American Chemical Society, 111(15), 5962-5964. doi:10.1021/ja00197a079Hoskins, B. F., & Robson, R. (1990). Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4’,4’’,4’’’-tetracyanotetraphenylmethane]BF4.xC6H5NO2. Journal of the American Chemical Society, 112(4), 1546-1554. doi:10.1021/ja00160a038Coronado, E., Giménez-Marqués, M., Espallargas, G. M., & Brammer, L. (2012). Tuning the magneto-structural properties of non-porous coordination polymers by HCl chemisorption. Nature Communications, 3(1). doi:10.1038/ncomms1827Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149), 1230444-1230444. doi:10.1126/science.1230444Slater, A. G., & Cooper, A. I. (2015). Function-led design of new porous materials. Science, 348(6238), aaa8075-aaa8075. doi:10.1126/science.aaa8075Hu, Z., Deibert, B. J., & Li, J. (2014). Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev., 43(16), 5815-5840. doi:10.1039/c4cs00010bCoronado, E., & Mínguez Espallargas, G. (2013). Dynamic magnetic MOFs. Chem. Soc. Rev., 42(4), 1525-1539. doi:10.1039/c2cs35278hLi, J.-R., Kuppler, R. J., & Zhou, H.-C. (2009). Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews, 38(5), 1477. doi:10.1039/b802426jMurray, L. J., Dincă, M., & Long, J. R. (2009). Hydrogen storage in metal–organic frameworks. Chemical Society Reviews, 38(5), 1294. doi:10.1039/b802256aGiménez-Marqués, M., Hidalgo, T., Serre, C., & Horcajada, P. (2016). Nanostructured metal–organic frameworks and their bio-related applications. Coordination Chemistry Reviews, 307, 342-360. doi:10.1016/j.ccr.2015.08.008Smulders, M. M. J., Riddell, I. A., Browne, C., & Nitschke, J. R. (2013). Building on architectural principles for three-dimensional metallosupramolecular construction. Chem. Soc. Rev., 42(4), 1728-1754. doi:10.1039/c2cs35254kCook, T. R., & Stang, P. J. (2015). Recent Developments in the Preparation and Chemistry of Metallacycles and Metallacages via Coordination. Chemical Reviews, 115(15), 7001-7045. doi:10.1021/cr5005666Inokuma, Y., Yoshioka, S., Ariyoshi, J., Arai, T., Hitora, Y., Takada, K., … Fujita, M. (2013). X-ray analysis on the nanogram to microgram scale using porous complexes. Nature, 495(7442), 461-466. doi:10.1038/nature11990Yoshioka, S., Inokuma, Y., Hoshino, M., Sato, T., & Fujita, M. (2015). Absolute structure determination of compounds with axial and planar chirality using the crystalline sponge method. Chemical Science, 6(7), 3765-3768. doi:10.1039/c5sc01681aCoronado, E., Giménez-Marqués, M., Mínguez Espallargas, G., Rey, F., & Vitórica-Yrezábal, I. J. (2013). Spin-Crossover Modification through Selective CO2 Sorption. Journal of the American Chemical Society, 135(43), 15986-15989. doi:10.1021/ja407135kM. Giménez-Marqués , N.Calvo Galve, M.Palomino, S.Valencia, F.Rey, G.Sastre, I. J.Vitórica-Yrezábal, M.Jiménez-Ruiz, J. A.Rodríguez-Velamazán, M. A.González, E.Coronado and G.Mínguez EspallargasSheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930Pawley, G. S. (1981). Unit-cell refinement from powder diffraction scans. Journal of Applied Crystallography, 14(6), 357-361. doi:10.1107/s0021889881009618Klinowski, J., Almeida Paz, F. A., Silva, P., & Rocha, J. (2011). Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Trans., 40(2), 321-330. doi:10.1039/c0dt00708kAromí, G., Barrios, L. A., Roubeau, O., & Gamez, P. (2011). Triazoles and tetrazoles: Prime ligands to generate remarkable coordination materials. Coordination Chemistry Reviews, 255(5-6), 485-546. doi:10.1016/j.ccr.2010.10.038Palomino, M., Corma, A., Rey, F., & Valencia, S. (2010). New Insights on CO2−Methane Separation Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs. Langmuir, 26(3), 1910-1917. doi:10.1021/la9026656Morris, R. E., & Wheatley, P. S. (2008). Gas Storage in Nanoporous Materials. Angewandte Chemie International Edition, 47(27), 4966-4981. doi:10.1002/anie.200703934Mason, J. A., McDonald, T. M., Bae, T.-H., Bachman, J. E., Sumida, K., Dutton, J. J., … Long, J. R. (2015). Application of a High-Throughput Analyzer in Evaluating Solid Adsorbents for Post-Combustion Carbon Capture via Multicomponent Adsorption of CO2, N2, and H2O. Journal of the American Chemical Society, 137(14), 4787-4803. doi:10.1021/jacs.5b00838Yazaydın, A. O., Snurr, R. Q., Park, T.-H., Koh, K., Liu, J., LeVan, M. D., … Willis, R. R. (2009). Screening of Metal−Organic Frameworks for Carbon Dioxide Capture from Flue Gas Using a Combined Experimental and Modeling Approach. Journal of the American Chemical Society, 131(51), 18198-18199. doi:10.1021/ja9057234Caskey, S. R., Wong-Foy, A. G., & Matzger, A. J. (2008). Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores. Journal of the American Chemical Society, 130(33), 10870-10871. doi:10.1021/ja8036096Calvo Galve, N., Coronado, E., Giménez-Marqués, M., & Mínguez Espallargas, G. (2014). A Mixed-Ligand Approach for Spin-Crossover Modulation in a Linear FeII Coordination Polymer. Inorganic Chemistry, 53(9), 4482-4490. doi:10.1021/ic500141vXiang, Z., & Cao, D. (2013). Porous covalent–organic materials: synthesis, clean energy application and design. J. Mater. Chem. A, 1(8), 2691-2718. doi:10.1039/c2ta00063

    Unusually Low Heat of Adsorption of CO2 on AlPO and SAPO Molecular Sieves

    Full text link
    [EN] The capture of CO2 from post-combustion streams or from other mixtures, such as natural gas, is an effective way of reducing CO2 emissions, which contribute to the greenhouse effect in the atmosphere. One of the developing technologies for this purpose is physisorption on selective solid adsorbents. The ideal adsorbents are selective toward CO2, have a large adsorption capacity at atmospheric pressure and are easily regenerated, resulting in high working capacity. Therefore, adsorbents combining molecular sieving properties and low heats of adsorption of CO2 are of clear interest as they will provide high selectivities and regenerabilities in CO2 separation process. Here we report that some aluminophosphate (AlPO) and silicoaluminophosphate (SAPO) materials with LTA, CHA and AFI structures present lower heats of adsorption of CO2 (13¿25 kJ/mol) than their structurally analogous zeolites at comparable framework charges. In some cases, their heats of adsorption are even lower than those of pure silica composition (20¿25 kJ/mol). This could mean a great improvement in the regeneration process compared to the most frequently used zeolitic adsorbents for this application while maintaining most of their adsorption capacity, if materials with the right stability and pore size and topology are found.We acknowledge the Spanish Ministry of Sciences, Innovation and Universities (MCIU), State Research Agency (AEI), and the European Fund for Regional Development (FEDER) for their funding via projects Multi2HYcat (EU-Horizon 2020 funded project under grant agreement no. 720783), Program Severo Ochoa SEV-2016-0683 and RTI2018-101033-B-I00 and also Fundacion Ramon Areces for funding through a research contract (CIVP18A3908). EP-B thanks the MCIU for his grant (FPU15/01602). NG-C thanks MCIU for her grant (BES-2016-078178).Pérez-Botella, E.; Martínez-Franco, R.; Gonzalez-Camuñas, N.; Cantin Sanz, A.; Palomino Roca, M.; Moliner Marin, M.; Valencia Valencia, S.... (2020). Unusually Low Heat of Adsorption of CO2 on AlPO and SAPO Molecular Sieves. Frontiers in Chemistry. 8:1-10. https://doi.org/10.3389/fchem.2020.588712S1108Bacsik, Z., Cheung, O., Vasiliev, P., & Hedin, N. (2016). Selective separation of CO2 and CH4 for biogas upgrading on zeolite NaKA and SAPO-56. Applied Energy, 162, 613-621. doi:10.1016/j.apenergy.2015.10.109BaerlocherC. H. McCuskerL. B. Database of Zeolite StructuresBoot-Handford, M. E., Abanades, J. C., Anthony, E. J., Blunt, M. J., Brandani, S., Mac Dowell, N., … Fennell, P. S. (2014). Carbon capture and storage update. Energy Environ. Sci., 7(1), 130-189. doi:10.1039/c3ee42350fBourgogneM. GuthJ.-L. WeyR. Process for the Preparation of Synthetic Zeolites, and Zeolites Obtained by Said Process1985Bui, M., Adjiman, C. S., Bardow, A., Anthony, E. J., Boston, A., Brown, S., … Mac Dowell, N. (2018). Carbon capture and storage (CCS): the way forward. Energy & Environmental Science, 11(5), 1062-1176. doi:10.1039/c7ee02342aCheung, O., Liu, Q., Bacsik, Z., & Hedin, N. (2012). Silicoaluminophosphates as CO2 sorbents. Microporous and Mesoporous Materials, 156, 90-96. doi:10.1016/j.micromeso.2012.02.003Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909Dawson, D. M., Griffin, J. M., Seymour, V. R., Wheatley, P. S., Amri, M., Kurkiewicz, T., … Ashbrook, S. E. (2017). A Multinuclear NMR Study of Six Forms of AlPO-34: Structure and Motional Broadening. The Journal of Physical Chemistry C, 121(3), 1781-1793. doi:10.1021/acs.jpcc.6b11908Díaz-Cabañas, M.-J., & Barrett, P. A. (1998). Synthesis and structure of pure SiO2 chabazite: the SiO2 polymorph with the lowest framework density. Chemical Communications, (17), 1881-1882. doi:10.1039/a804800bFischer, M. (2017). Computational evaluation of aluminophosphate zeotypes for CO2/N2 separation. Physical Chemistry Chemical Physics, 19(34), 22801-22812. doi:10.1039/c7cp03841kGarcía, E. J., Pérez-Pellitero, J., Pirngruber, G. D., Jallut, C., Palomino, M., Rey, F., & Valencia, S. (2014). Tuning the Adsorption Properties of Zeolites as Adsorbents for CO2 Separation: Best Compromise between the Working Capacity and Selectivity. Industrial & Engineering Chemistry Research, 53(23), 9860-9874. doi:10.1021/ie500207sGirnus, I., Jancke, K., Vetter, R., Richter-Mendau, J., & Caro, J. (1995). Large AlPO4-5 crystals by microwave heating. Zeolites, 15(1), 33-39. doi:10.1016/0144-2449(94)00004-cGlobal Status Report of CCS2019International Zeolite Association Synthesis CommissionLee, K. B., Beaver, M. G., Caram, H. S., & Sircar, S. (2008). Reversible Chemisorbents for Carbon Dioxide and Their Potential Applications. Industrial & Engineering Chemistry Research, 47(21), 8048-8062. doi:10.1021/ie800795yLee, S.-Y., & Park, S.-J. (2015). A review on solid adsorbents for carbon dioxide capture. Journal of Industrial and Engineering Chemistry, 23, 1-11. doi:10.1016/j.jiec.2014.09.001Lemishko, T., Valencia, S., Rey, F., Jiménez-Ruiz, M., & Sastre, G. (2016). Inelastic Neutron Scattering Study on the Location of Brønsted Acid Sites in High Silica LTA Zeolite. The Journal of Physical Chemistry C, 120(43), 24904-24909. doi:10.1021/acs.jpcc.6b09012Leung, D. Y. C., Caramanna, G., & Maroto-Valer, M. M. (2014). An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 39, 426-443. doi:10.1016/j.rser.2014.07.093Liu, X., Vlugt, T. J. H., & Bardow, A. (2011). Maxwell–Stefan diffusivities in liquid mixtures: Using molecular dynamics for testing model predictions. Fluid Phase Equilibria, 301(1), 110-117. doi:10.1016/j.fluid.2010.11.019Man, P. P., Briend, M., Peltre, M. J., Lamy, A., Beaunier, P., & Barthomeuf, D. (1991). A topological model for the silicon incorporation in SAPO-37 molecular sieves: Correlations with acidity and catalysis. Zeolites, 11(6), 563-572. doi:10.1016/s0144-2449(05)80006-5Martin, C., Tosi-Pellenq, N., Patarin, J., & Coulomb, J. P. (1998). Sorption Properties of AlPO4-5 and SAPO-5 Zeolite-like Materials. Langmuir, 14(7), 1774-1778. doi:10.1021/la960755cMartínez-Franco, R., Cantín, Á., Vidal-Moya, A., Moliner, M., & Corma, A. (2015). Self-Assembled Aromatic Molecules as Efficient Organic Structure Directing Agents to Synthesize the Silicoaluminophosphate SAPO-42 with Isolated Si Species. Chemistry of Materials, 27(8), 2981-2989. doi:10.1021/acs.chemmater.5b00337Martínez-Franco, R., Li, Z., Martínez-Triguero, J., Moliner, M., & Corma, A. (2016). Improving the catalytic performance of SAPO-18 for the methanol-to-olefins (MTO) reaction by controlling the Si distribution and crystal size. Catalysis Science & Technology, 6(8), 2796-2806. doi:10.1039/c5cy02298cMiyamoto, M., Fujioka, Y., & Yogo, K. (2012). Pure silica CHA type zeolite for CO2 separation using pressure swing adsorption at high pressure. Journal of Materials Chemistry, 22(38), 20186. doi:10.1039/c2jm34597hVan Nordstrand, R. A., Santilli, D. S., & Zones, S. I. (1988). An All-Silica Molecular Sieve That Is Isostructural with AlPO4-5. Perspectives in Molecular Sieve Science, 236-245. doi:10.1021/bk-1988-0368.ch015Palomino, M., Corma, A., Rey, F., & Valencia, S. (2009). New Insights on CO2−Methane Separation Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs. Langmuir, 26(3), 1910-1917. doi:10.1021/la9026656Pham, T. D., Hudson, M. R., Brown, C. M., & Lobo, R. F. (2014). Molecular Basis for the High CO2Adsorption Capacity of Chabazite Zeolites. ChemSusChem, 7(11), 3031-3038. doi:10.1002/cssc.201402555Prakash, A. M., & Unnikrishnan, S. (1994). Synthesis of SAPO-34: high silicon incorporation in the presence of morpholine as template. Journal of the Chemical Society, Faraday Transactions, 90(15), 2291. doi:10.1039/ft9949002291Riboldi, L., & Bolland, O. (2017). Overview on Pressure Swing Adsorption (PSA) as CO2 Capture Technology: State-of-the-Art, Limits and Potentials. Energy Procedia, 114, 2390-2400. doi:10.1016/j.egypro.2017.03.1385Rubin, E. S., Davison, J. E., & Herzog, H. J. (2015). The cost of CO2 capture and storage. International Journal of Greenhouse Gas Control, 40, 378-400. doi:10.1016/j.ijggc.2015.05.018Schreyeck, L., Stumbe, J., Caullet, P., Mougenel, J.-C., & Marler, B. (1998). The diaza-polyoxa-macrocycle `Kryptofix222’ as a new template for the synthesis of LTA-type AlPO4. Microporous and Mesoporous Materials, 22(1-3), 87-106. doi:10.1016/s1387-1811(98)00082-1Shang, J., Li, G., Singh, R., Gu, Q., Nairn, K. M., Bastow, T. J., … Webley, P. A. (2012). Discriminative Separation of Gases by a «Molecular Trapdoor» Mechanism in Chabazite Zeolites. Journal of the American Chemical Society, 134(46), 19246-19253. doi:10.1021/ja309274ySircar, S., & Myers, A. (2003). Gas Separation by Zeolites. Handbook of Zeolite Science and Technology. doi:10.1201/9780203911167.ch22Tagliabue, M., Farrusseng, D., Valencia, S., Aguado, S., Ravon, U., Rizzo, C., … Mirodatos, C. (2009). Natural gas treating by selective adsorption: Material science and chemical engineering interplay. Chemical Engineering Journal, 155(3), 553-566. doi:10.1016/j.cej.2009.09.010Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. doi:10.1515/pac-2014-1117NIST Chemistry WebBook, SRD 69–Carbon DioxideWilson, S. T., Lok, B. M., Messina, C. A., Cannan, T. R., & Flanigen, E. M. (1982). Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. Journal of the American Chemical Society, 104(4), 1146-1147. doi:10.1021/ja00368a062Young, D., & Davis, M. E. (1991). Studies on SAPO-5: synthesis with higher silicon contents. Zeolites, 11(3), 277-281. doi:10.1016/s0144-2449(05)80232-5Zibrowius, B., Löffler, E., & Hunger, M. (1992). Multinuclear MAS n.m.r. and i.r. spectroscopic study of silicon incorporation into SAPO-5, SAPO-31, and SAPO-34 molecular sieves. Zeolites, 12(2), 167-174. doi:10.1016/0144-2449(92)90079-5Zones, S. I. (1991). Conversion of faujasites to high-silica chabazite SSZ-13 in the presence of N,N,N-trimethyl-1-adamantammonium iodide. Journal of the Chemical Society, Faraday Transactions, 87(22), 3709. doi:10.1039/ft9918703709Zones, S. I., & Van Nordstrand, R. A. (1988). Novel zeolite transformations: The template-mediated conversion of Cubic P zeolite to SSZ-13. Zeolites, 8(3), 166-174. doi:10.1016/s0144-2449(88)80302-

    Templateless Synthesis of Ultra-Microporous 3D Graphitic Carbon from Cyclodextrins and Their Use as Selective Catalyst for Oxygen Activation

    Full text link
    [EN] Pyrolysis of alpha-, beta-, and gamma-cyclodextrins at 900 degrees C gives rise to the formation of crystalline graphitic porous nanoparticles (G(CD)), where the dimensions of the pores are uniform in the range from 0.63 to 0.97 nm, from G(alpha-CD) to G(gamma-CD), as determined by transmission electron microscopy. It is found that, while for G(beta-CD) and G(gamma-CD), the surface area measured by N-2 adsorption is about 330-550 m(2) g(-1), respectively, no area can be measured for G(alpha-CD) with N-2 or Ar due to its small pore dimensions. However, CO2 adsorption reveals for G(alpha-CD) the presence of ultra-microporosity and a surface area of 727 m(2) g(-1). G(CD) exhibits activity as metal-free catalysts for the aerobic oxidation of alcohols and the activity increases as the pore dimension decreases. Density functional theory calculations indicate that this high catalytic activity for O-2 activation derives from confinement effects that favor charge transfer from the graphitic walls to O-2. Studies on the formation mechanism shows that the key step leading to the formation of the channels is the melting of cyclodextrin precursors that makes possible the assembly of these capsules before their transformation into microporous graphitic particles.Financial support by the Spanish Ministry of Science and Innovation (Severo Ochoa and Grant No. RTI2018-890237-CO2-1) and Generalitat Valenciana (Prometeo Grant No. 2017-083) is gratefully acknowledged. A.R.P. thanks the Spanish Ministry of Education for a Ramon y Cajal research associate contract. S.N. thanks financial support by the Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016), Ministerio de Ciencia, Innovacion y Universidades Grant No. RTI2018-099482-A-I00 project and Generalitat Valenciana grupos de investigacion consolidables 2019 (ref: Grant No. AICO/2019/214) project.Rendon-Patiño, A.; Santiago-Portillo, A.; Vallés-García, C.; Palomino Roca, M.; Navalón Oltra, S.; Franconetti, A.; Primo Arnau, AM.... (2020). Templateless Synthesis of Ultra-Microporous 3D Graphitic Carbon from Cyclodextrins and Their Use as Selective Catalyst for Oxygen Activation. Small Methods. 4(3):1-9. https://doi.org/10.1002/smtd.201900721S194

    Cobalt(II) Bipyrazolate Metal-Organic Frameworks as Heterogeneous Catalysts in Cumene Aerobic Oxidation: A Tag-Dependent Selectivity

    Full text link
    "This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c00481"[EN] Three metal-organic frameworks with the general formula Co(BPZX) (BPZX(2-) = 3-X-4,4'-bipyrazolate, X = H, NH2, NO2) constructed with ligands having different functional groups on the same skeleton have been employed as heterogeneous catalysts for aerobic liquid-phase oxidation of cumene with O-2 as oxidant. O-2 adsorption isotherms collected at p(O2) = 1 atm and T = 195 and 273 K have cast light on the relative affinity of these catalysts for dioxygen. The highest gas uptake at 195 K is found for Co(BPZ) (3.2 mmol/g (10.1 wt % O-2)), in line with its highest BET specific surface area (926 m(2)/g) in comparison with those of Co(BPZNH(2)) (317 m(2)/g) and Co(BPZNO(2)) (645 m(2)/g). The O-2 isosteric heat of adsorption (Q(2)) trend follows the order Co(BPZ) > Co(BPZNH(2)) > Co(BPZNO(2)). Interestingly, the selectivity in the cumene oxidation products was found to be dependent on the tag present in the catalyst linker: while cumene hydroperoxide (CHP) is the main product obtained with Co(BPZ) (84% selectivity to CHP after 7 h, p(O2) = 4 bar, and T = 363 K), further oxidation to 2-phenyl-2-propanol (PP) is observed in the presence of Co(BPZNH(2)) as the catalyst (69% selectivity to PP under the same experimental conditions).S.G., R.V., and M.M. acknowledge Universita dell'Insubria for partial funding. G.G. thanks the Italian MIUR through the PRIN 2017 Project Multi-e: Multielectron Transfer for the Conversion of Small Molecules: an Enabling Technology for the Chemical Use of Renewable Energy (20179337R7) for financial support. G.G. thanks the TRAINER project (Catalysts for Transition to Renewable Energy Future) ref. ANR-17-MPGA-0017 for support. C.P. thanks the University of Camerino and the Italian MIUR throughout the PRIN 2015 Project Towards a Sustainable Chemistry (20154 x 9ATP_002). This project has also received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 641887 (project acronym: DEFNET) and the Spanish Government through projects MAT2017-82288-C2-1-P and Severo Ochoa (SEV-2016-0683). Professor Norberto Masciocchi (University of Insubria, Como, Italy) is acknowledged for fruitful discussions. The authors are also grateful to Dr. Giulia Tuci (CNR-ICCOM Florence, Italy) for help with the XPS curve fitting. The Microscopy Service of the Universitat Politècnica de València is gratefully acknowledged for the electron microscopy measurements.Nowacka, AE.; Vismara, R.; Mercuri, G.; Moroni, M.; Palomino Roca, M.; Domasevitch, K.; Di Nicola, C.... (2020). Cobalt(II) Bipyrazolate Metal-Organic Frameworks as Heterogeneous Catalysts in Cumene Aerobic Oxidation: A Tag-Dependent Selectivity. Inorganic Chemistry. 59(12):8161-8172. https://doi.org/10.1021/acs.inorgchem.0c00481S816181725912Fortuin, J. P., & Waterman, H. I. (1953). Production of phenol from cumene. Chemical Engineering Science, 2(4), 182-192. doi:10.1016/0009-2509(53)80040-0Luyben, W. L. (2009). Design and Control of the Cumene Process. Industrial & Engineering Chemistry Research, 49(2), 719-734. doi:10.1021/ie9011535Matsui, S., & Fujita, T. (2001). New cumene-oxidation systems. Catalysis Today, 71(1-2), 145-152. doi:10.1016/s0920-5861(01)00450-3Opeida, I. A., Kytsya, A. R., Bazylyak, L. I., & Pobigun, O. I. (2017). Silver Nanoparticle Catalysis of the Liquid-Phase Radical Chain Oxidation of Cumene by Molecular Oxygen. Theoretical and Experimental Chemistry, 52(6), 369-374. doi:10.1007/s11237-017-9492-zTsodikov, M. V., Kugel, V. Y., Slivinskii, E. V., Bondarenko, G. N., Maksimov, Y. V., Alvarez, M. A., … Navio, J. A. (2000). Selectivity and mechanism of cumene liquid-phase oxidation in the presence of powdered mixed iron–aluminum oxides prepared by alkoxy method. Applied Catalysis A: General, 193(1-2), 237-242. doi:10.1016/s0926-860x(99)00438-xZhang, M., Wang, L., Ji, H., Wu, B., & Zeng, X. (2007). Cumene Liquid Oxidation to Cumene Hydroperoxide over CuO Nanoparticle with Molecular Oxygen under Mild Condition. Journal of Natural Gas Chemistry, 16(4), 393-398. doi:10.1016/s1003-9953(08)60010-9Hsu, Y. F., & Cheng, C. P. (1998). Mechanistic investigation of the autooxidation of cumene catalyzed by transition metal salts supported on polymer. Journal of Molecular Catalysis A: Chemical, 136(1), 1-11. doi:10.1016/s1381-1169(98)00016-8Hsu, Y. F., & Cheng, C. P. (1997). Polymer supported catalyst for the effective autoxidation of cumene to cumene hydroperoxide. Journal of Molecular Catalysis A: Chemical, 120(1-3), 109-116. doi:10.1016/s1381-1169(96)00442-6Ying Fang, H., Mei Huei, Y., & Cheu Pyeng, C. (1996). Autooxidation of cumene catalyzed by transition metal compounds on polymeric supports. Journal of Molecular Catalysis A: Chemical, 105(3), 137-144. doi:10.1016/1381-1169(95)00205-7Narulkar, D. D., Srivastava, A. K., Butcher, R. J., Ansy, K. M., & Dhuri, S. N. (2017). Synthesis and characterization of N3Py2 ligand-based cobalt(II), nickel(II) and copper(II) catalysts for efficient conversion of hydrocarbons to alcohols. Inorganica Chimica Acta, 467, 405-414. doi:10.1016/j.ica.2017.08.027Wang, R.-M., Duan, Z.-F., He, Y.-F., & Lei, Z.-Q. (2006). Heterogeneous catalytic aerobic oxidation behavior of Co–Na heterodinuclear polymeric complex of Salen-crown ether. Journal of Molecular Catalysis A: Chemical, 260(1-2), 280-287. doi:10.1016/j.molcata.2006.07.049Rogovin, M., & Neumann, R. (1999). Silicate xerogels containing cobalt as heterogeneous catalysts for the side-chain oxidation of alkyl aromatic compounds with tert-butyl hydroperoxide. Journal of Molecular Catalysis A: Chemical, 138(2-3), 315-318. doi:10.1016/s1381-1169(98)00207-6Konopińska, A. (2017). <i>N</i>-Hydroxyphthalimide as a Catalyst of Cumene Oxidation with Hydroperoxide. Modern Chemistry, 5(2), 29. doi:10.11648/j.mc.20170502.12VARMA, G. (1973). Heterogeneous catalytic oxidation of cumene (isopropyl benzene) in liquid phase. Journal of Catalysis, 28(2), 236-244. doi:10.1016/0021-9517(73)90006-7Collom, S. L., Bloomfield, A. J., & Anastas, P. T. (2016). Advancing Sustainable Manufacturing through a Heterogeneous Cobalt Catalyst for Selective C–H Oxidation. Industrial & Engineering Chemistry Research, 55(12), 3308-3312. doi:10.1021/acs.iecr.5b03674Scognamiglio, J., Jones, L., Letizia, C. S., & Api, A. M. (2012). Fragrance material review on 2-phenyl-2-propanol. Food and Chemical Toxicology, 50, S130-S133. doi:10.1016/j.fct.2011.10.011Rossin, A., Tuci, G., Luconi, L., & Giambastiani, G. (2017). Metal–Organic Frameworks as Heterogeneous Catalysts in Hydrogen Production from Lightweight Inorganic Hydrides. ACS Catalysis, 7(8), 5035-5045. doi:10.1021/acscatal.7b01495Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A., & Verpoort, F. (2015). Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 44(19), 6804-6849. doi:10.1039/c4cs00395kLiu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., & Su, C.-Y. (2014). Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev., 43(16), 6011-6061. doi:10.1039/c4cs00094cGascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959kLuo, S., Zeng, Z., Zeng, G., Liu, Z., Xiao, R., Chen, M., … Jiang, D. (2019). Metal Organic Frameworks as Robust Host of Palladium Nanoparticles in Heterogeneous Catalysis: Synthesis, Application, and Prospect. ACS Applied Materials & Interfaces, 11(36), 32579-32598. doi:10.1021/acsami.9b11990Deng, X., Li, Z., & García, H. (2017). Visible Light Induced Organic Transformations Using Metal-Organic-Frameworks (MOFs). Chemistry - A European Journal, 23(47), 11189-11209. doi:10.1002/chem.201701460Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Metal-Organic Frameworks as Catalysts for Oxidation Reactions. Chemistry - A European Journal, 22(24), 8012-8024. doi:10.1002/chem.201505141Song, X., Hu, D., Yang, X., Zhang, H., Zhang, W., Li, J., … Yu, J. (2019). Polyoxomolybdic Cobalt Encapsulated within Zr-Based Metal–Organic Frameworks as Efficient Heterogeneous Catalysts for Olefins Epoxidation. ACS Sustainable Chemistry & Engineering, 7(3), 3624-3631. doi:10.1021/acssuschemeng.8b06736Zhang, T., Hu, Y.-Q., Han, T., Zhai, Y.-Q., & Zheng, Y.-Z. (2018). Redox-Active Cobalt(II/III) Metal–Organic Framework for Selective Oxidation of Cyclohexene. ACS Applied Materials & Interfaces, 10(18), 15786-15792. doi:10.1021/acsami.7b19323Ma, Y., Peng, H., Liu, J., Wang, Y., Hao, X., Feng, X., … Li, Y. (2018). Polyoxometalate-Based Metal–Organic Frameworks for Selective Oxidation of Aryl Alkenes to Aldehydes. Inorganic Chemistry, 57(7), 4109-4116. doi:10.1021/acs.inorgchem.8b00282Othong, J., Boonmak, J., Ha, J., Leelasubcharoen, S., & Youngme, S. (2017). Thermally Induced Single-Crystal-to-Single-Crystal Transformation and Heterogeneous Catalysts for Epoxidation Reaction of Co(II) Based Metal–Organic Frameworks Containing 1,4-Phenylenediacetic Acid. Crystal Growth & Design, 17(4), 1824-1835. doi:10.1021/acs.cgd.6b01788Wang, J.-C., Ding, F.-W., Ma, J.-P., Liu, Q.-K., Cheng, J.-Y., & Dong, Y.-B. (2015). Co(II)-MOF: A Highly Efficient Organic Oxidation Catalyst with Open Metal Sites. Inorganic Chemistry, 54(22), 10865-10872. doi:10.1021/acs.inorgchem.5b01938Tuci, G., Giambastiani, G., Kwon, S., Stair, P. C., Snurr, R. Q., & Rossin, A. (2014). Chiral Co(II) Metal–Organic Framework in the Heterogeneous Catalytic Oxidation of Alkenes under Aerobic and Anaerobic Conditions. ACS Catalysis, 4(3), 1032-1039. doi:10.1021/cs401003dHamidipour, L., & Farzaneh, F. (2013). Cobalt metal organic framework as an efficient heterogeneous catalyst for the oxidation of alkanes and alkenes. Reaction Kinetics, Mechanisms and Catalysis, 109(1), 67-75. doi:10.1007/s11144-012-0533-2Luz, I., León, A., Boronat, M., Llabrés i Xamena, F. X., & Corma, A. (2013). Selective aerobic oxidation of activated alkanes with MOFs and their use for epoxidation of olefins with oxygen in a tandem reaction. Catal. Sci. Technol., 3(2), 371-379. doi:10.1039/c2cy20449eSantiago-Portillo, A., Navalón, S., Cirujano, F. G., Xamena, F. X. L. i, Alvaro, M., & Garcia, H. (2015). MIL-101 as Reusable Solid Catalyst for Autoxidation of Benzylic Hydrocarbons in the Absence of Additional Oxidizing Reagents. ACS Catalysis, 5(6), 3216-3224. doi:10.1021/acscatal.5b00411Nowacka, A., Briantais, P., Prestipino, C., & Llabrés i Xamena, F. X. (2019). Selective Aerobic Oxidation of Cumene to Cumene Hydroperoxide over Mono- and Bimetallic Trimesate Metal–Organic Frameworks Prepared by a Facile «Green» Aqueous Synthesis. ACS Sustainable Chemistry & Engineering, 7(8), 7708-7715. doi:10.1021/acssuschemeng.8b06472Vismara, R., Tuci, G., Tombesi, A., Domasevitch, K. V., Di Nicola, C., Giambastiani, G., … Galli, S. (2019). Tuning Carbon Dioxide Adsorption Affinity of Zinc(II) MOFs by Mixing Bis(pyrazolate) Ligands with N-Containing Tags. ACS Applied Materials & Interfaces, 11(30), 26956-26969. doi:10.1021/acsami.9b08015Vismara, R., Tuci, G., Mosca, N., Domasevitch, K. V., Di Nicola, C., Pettinari, C., … Rossin, A. (2019). Amino-decorated bis(pyrazolate) metal–organic frameworks for carbon dioxide capture and green conversion into cyclic carbonates. Inorganic Chemistry Frontiers, 6(2), 533-545. doi:10.1039/c8qi00997jMosca, N., Vismara, R., Fernandes, J. A., Tuci, G., Di Nicola, C., Domasevitch, K. V., … Galli, S. (2018). Nitro-Functionalized Bis(pyrazolate) Metal-Organic Frameworks as Carbon Dioxide Capture Materials under Ambient Conditions. Chemistry - A European Journal, 24(50), 13170-13180. doi:10.1002/chem.201802240Pettinari, C., Tăbăcaru, A., & Galli, S. (2016). Coordination polymers and metal–organic frameworks based on poly(pyrazole)-containing ligands. Coordination Chemistry Reviews, 307, 1-31. doi:10.1016/j.ccr.2015.08.005Pettinari, C., Tăbăcaru, A., Boldog, I., Domasevitch, K. V., Galli, S., & Masciocchi, N. (2012). Novel Coordination Frameworks Incorporating the 4,4′-Bipyrazolyl Ditopic Ligand. Inorganic Chemistry, 51(9), 5235-5245. doi:10.1021/ic3001416Colombo, V., Montoro, C., Maspero, A., Palmisano, G., Masciocchi, N., Galli, S., … Navarro, J. A. R. (2012). Tuning the Adsorption Properties of Isoreticular Pyrazolate-Based Metal–Organic Frameworks through Ligand Modification. Journal of the American Chemical Society, 134(30), 12830-12843. doi:10.1021/ja305267mTăbăcaru, A., Pettinari, C., Masciocchi, N., Galli, S., Marchetti, F., & Angjellari, M. (2011). Pro-porous Coordination Polymers of the 1,4-Bis((3,5-dimethyl-1H-pyrazol-4-yl)-methyl)benzene Ligand with Late Transition Metals. Inorganic Chemistry, 50(22), 11506-11513. doi:10.1021/ic2013705Colombo, V., Galli, S., Choi, H. J., Han, G. D., Maspero, A., Palmisano, G., … Long, J. R. (2011). High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites. Chemical Science, 2(7), 1311. doi:10.1039/c1sc00136aMasciocchi, N., Galli, S., Colombo, V., Maspero, A., Palmisano, G., Seyyedi, B., … Bordiga, S. (2010). Cubic Octanuclear Ni(II) Clusters in Highly Porous Polypyrazolyl-Based Materials. Journal of the American Chemical Society, 132(23), 7902-7904. doi:10.1021/ja102862jGalli, S., Masciocchi, N., Colombo, V., Maspero, A., Palmisano, G., López-Garzón, F. J., … Navarro, J. A. R. (2010). Adsorption of Harmful Organic Vapors by Flexible Hydrophobic Bis-pyrazolate Based MOFs. Chemistry of Materials, 22(5), 1664-1672. doi:10.1021/cm902899tBoldog, I., Sieler, J., Chernega, A. N., & Domasevitch, K. V. (2002). 4,4′-Bipyrazolyl: new bitopic connector for construction of coordination networks. Inorganica Chimica Acta, 338, 69-77. doi:10.1016/s0020-1693(02)00902-7Domasevitch, K. V., Gospodinov, I., Krautscheid, H., Klapötke, T. M., & Stierstorfer, J. (2019). Facile and selective polynitrations at the 4-pyrazolyl dual backbone: straightforward access to a series of high-density energetic materials. New Journal of Chemistry, 43(3), 1305-1312. doi:10.1039/c8nj05266bTOPAS-Academic 6; Bruker, by Coelho Software: Brisbane, Australia, 2016.Coelho, A. A. (2003). Indexing of powder diffraction patterns by iterative use of singular value decomposition. Journal of Applied Crystallography, 36(1), 86-95. doi:10.1107/s0021889802019878Cheetham, A. K., Bennett, T. D., Coudert, F.-X., & Goodwin, A. L. (2016). Defects and disorder in metal organic frameworks. Dalton Transactions, 45(10), 4113-4126. doi:10.1039/c5dt04392aCliffe, M. J., Wan, W., Zou, X., Chater, P. A., Kleppe, A. K., Tucker, M. G., … Goodwin, A. L. (2014). Correlated defect nanoregions in a metal–organic framework. Nature Communications, 5(1). doi:10.1038/ncomms5176Spirkl, S., Grzywa, M., & Volkmer, D. (2018). Synthesis and characterization of a flexible metal organic framework generated from MnIII and the 4,4′-bipyrazolate-ligand. Dalton Transactions, 47(26), 8779-8786. doi:10.1039/c8dt01185kNazarenko, O. M., Rusanov, E. B., Chernega, A. N., & Domasevitch, K. V. (2013). Cobalt(II) and cadmium(II) square grids supported with 4,4′-bipyrazole and accommodating 3-carboxyadamantane-1-carboxylate. Acta Crystallographica Section C Crystal Structure Communications, 69(3), 232-236. doi:10.1107/s0108270113003405Tăbăcaru, A., Pettinari, C., Marchetti, F., di Nicola, C., Domasevitch, K. V., Galli, S., … Cocchioni, M. (2012). Antibacterial Action of 4,4′-Bipyrazolyl-Based Silver(I) Coordination Polymers Embedded in PE Disks. Inorganic Chemistry, 51(18), 9775-9788. doi:10.1021/ic3011635Sun, Q.-F., Wong, K. M.-C., Liu, L.-X., Huang, H.-P., Yu, S.-Y., Yam, V. W.-W., … Yu, K.-C. (2008). Self-Assembly, Structures, and Photophysical Properties of 4,4′-Bipyrazolate-Linked Metallo-Macrocycles with Dimetal Clips. Inorganic Chemistry, 47(6), 2142-2154. doi:10.1021/ic701344pLozan, V., Solntsev, P. Y., Leibeling, G., Domasevitch, K. V., & Kersting, B. (2007). Tetranuclear Nickel Complexes Composed of Pairs of Dinuclear LNi2 Fragments Linked by 4,4′-Bipyrazolyl, 1,4-Bis(4′-pyrazolyl)benzene, and 4,4′-Bipyridazine: Synthesis, Structures, and Magnetic Properties. European Journal of Inorganic Chemistry, 2007(20), 3217-3226. doi:10.1002/ejic.200700317Bond distances and angles for the rigid body describing the ligand: C–C and C-N of the pyrazole ring 1.36 Å; exocyclic C–C 1.40 Å; C–H of the pyrazole ring 0.95 Å; C–NNH2 1.40 Å; N–H 0.95 Å; pyrazole ring internal and external bond angles 108 and 126°, respectively; angles at the nitrogen atom of the amino group 120°.Coelho, A. A. (2000). Whole-profile structure solution from powder diffraction data using simulated annealing. Journal of Applied Crystallography, 33(3), 899-908. doi:10.1107/s002188980000248xCheary, R. W., & Coelho, A. (1992). A fundamental parameters approach to X-ray line-profile fitting. Journal of Applied Crystallography, 25(2), 109-121. doi:10.1107/s0021889891010804Stephens, P. W. (1999). Phenomenological model of anisotropic peak broadening in powder diffraction. Journal of Applied Crystallography, 32(2), 281-289. doi:10.1107/s0021889898006001Rouquerol, J., Llewellyn, P., & Rouquerol, F. (2007). Is the bet equation applicable to microporous adsorbents? Characterization of Porous Solids VII - Proceedings of the 7th International Symposium on the Characterization of Porous Solids (COPS-VII), Aix-en-Provence, France, 26-28 May 2005, 49-56. doi:10.1016/s0167-2991(07)80008-5Saeidi, N., & Parvini, M. (2015). Accuracy of Dubinin-Astakov and Dubinin-Raduchkevic Adsorption Isotherm Models in Evaluating Micropore Volume of Bontonite. Periodica Polytechnica Chemical Engineering. doi:10.3311/ppch.8374Zhu, X., Tian, C., Veith, G. M., Abney, C. W., Dehaudt, J., & Dai, S. (2016). In Situ Doping Strategy for the Preparation of Conjugated Triazine Frameworks Displaying Efficient CO2 Capture Performance. Journal of the American Chemical Society, 138(36), 11497-11500. doi:10.1021/jacs.6b07644Zhu, X., Mahurin, S. M., An, S.-H., Do-Thanh, C.-L., Tian, C., Li, Y., … Dai, S. (2014). Efficient CO2 capture by a task-specific porous organic polymer bifunctionalized with carbazole and triazine groups. Chemical Communications, 50(59), 7933. doi:10.1039/c4cc01588fSpek, A. L. (2009). Structure validation in chemical crystallography. Acta Crystallographica Section D Biological Crystallography, 65(2), 148-155. doi:10.1107/s090744490804362xBlatov, V. A., Shevchenko, A. P., & Proserpio, D. M. (2014). Applied Topological Analysis of Crystal Structures with the Program Package ToposPro. Crystal Growth & Design, 14(7), 3576-3586. doi:10.1021/cg500498kTonigold, M., Lu, Y., Mavrandonakis, A., Puls, A., Staudt, R., Möllmer, J., … Volkmer, D. (2011). Pyrazolate-Based Cobalt(II)-Containing Metal-Organic Frameworks in Heterogeneous Catalytic Oxidation Reactions: Elucidating the Role of Entatic States for Biomimetic Oxidation Processes. Chemistry - A European Journal, 17(31), 8671-8695. doi:10.1002/chem.201003173Ma, S., & Zhou, H.-C. (2006). A Metal−Organic Framework with Entatic Metal Centers Exhibiting High Gas Adsorption Affinity. Journal of the American Chemical Society, 128(36), 11734-11735. doi:10.1021/ja063538zWang, Z.-J., Lv, J.-J., Yi, R.-N., Xiao, M., Feng, J.-J., Liang, Z.-W., … Xu, X. (2018). Nondirecting Group sp 3 C−H Activation for Synthesis of Bibenzyls via Homo-coupling as Catalyzed by Reduced Graphene Oxide Supported PtPd@Pt Porous Nanospheres. Advanced Synthesis & Catalysis, 360(5), 932-941. doi:10.1002/adsc.201701389CASEMIER, J. (1973). The oxidation of cumene and the decomposition of cumene hydroperoxide on silver, copper, and platinum. Journal of Catalysis, 29(3), 367-373. doi:10.1016/0021-9517(73)90242-xLiao, S., Chi, Y., Yu, H., Wang, H., & Peng, F. (2014). Tuning the Selectivity in the Aerobic Oxidation of Cumene Catalyzed by Nitrogen-Doped Carbon Nanotubes. ChemCatChem, 6(2), 555-560. doi:10.1002/cctc.201300909Silvestre-Albero, J. (2001). Characterization of microporous solids by immersion calorimetry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187-188(1-3), 151-165. doi:10.1016/s0927-7757(01)00620-3Everett, D. H. (1972). Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Pure and Applied Chemistry, 31(4), 577-638. doi:10.1351/pac197231040577Liu, C., Wang, T., Ji, J., Wang, C., Wang, H., Jin, P., … Jiang, J. (2019). The effect of pore size and layer number of metal–porphyrin coordination nanosheets on sensing DNA. Journal of Materials Chemistry C, 7(33), 10240-10246. doi:10.1039/c9tc02778eGong, T., Yang, X., Fang, J.-J., Sui, Q., Xi, F.-G., & Gao, E.-Q. (2017). Distinct Chromic and Magnetic Properties of Metal–Organic Frameworks with a Redox Ligand. ACS Applied Materials & Interfaces, 9(6), 5503-5512. doi:10.1021/acsami.6b15540Yamada, Y., Kim, J., Matsuo, S., & Sato, S. (2014). Nitrogen-containing graphene analyzed by X-ray photoelectron spectroscopy. Carbon, 70, 59-74. doi:10.1016/j.carbon.2013.12.061Singhbabu, Y. N., Kumari, P., Parida, S., & Sahu, R. K. (2014). Conversion of pyrazoline to pyrazole in hydrazine treated N-substituted reduced graphene oxide films obtained by ion bombardment and their electrical properties. Carbon, 74, 32-43. doi:10.1016/j.carbon.2014.02.079Dementjev, A. ., de Graaf, A., van de Sanden, M. C. ., Maslakov, K. ., Naumkin, A. ., & Serov, A. . (2000). X-Ray photoelectr
    corecore