421 research outputs found

    Flavour symmetry restoration and kaon weak matrix elements in quenched twisted mass QCD

    Get PDF
    We simulate two variants of quenched twisted mass QCD (tmQCD), with degenerate Wilson quarks of masses equal to or heavier than half the strange quark mass. We use Ward identities in order to measure the twist angles of the theory and thus check the quality of the tuning of mass parameters to a physics condition which stays constant as the lattice spacing is varied. Flavour symmetry breaking in tmQCD is studied in a framework of two fully twisted and two standard Wilson quark flavours, tuned to be degenerate in the continuum. Comparing pseudoscalar masses, obtained from connected quark diagrams made of tmQCD and/or standard Wilson quark propagators, we confirm that flavour symmetry breaking effects, which are at most 5%, decrease as we approach the continuum limit. We also compute the pseudoscalar decay constant in the continuum limit, with reduced systematics. As a consequence of improved tuning of the mass parameters at β=6.1\beta = 6.1, we reanalyse our previous BKB_K results. Our main phenomenological findings are r0fK=0.421(7)r_0 f_K = 0.421(7) and B^K=0.735(71)\hat B_K = 0.735(71).Comment: 41 pages, figures included, one reference added. Final version as accepted for publication on Nucl.Phys.

    A precise determination of BKB_K in quenched QCD

    Full text link
    The BKB_K parameter is computed in quenched lattice QCD with Wilson twisted mass fermions. Two variants of tmQCD are used; in both of them the relevant ΔS=2\Delta S = 2 four-fermion operator is renormalised multiplicatively. The renormalisation adopted is non-perturbative, with a Schroedinger functional renormalisation condition. Renormalisation group running is also non-perturbative, up to very high energy scales. In one of the two tmQCD frameworks the computations have been performed at the physical KK-meson mass, thus eliminating the need of mass extrapolations. Simulations have been performed at several lattice spacings and the continuum limit was reached by combining results from both tmQCD regularisations. Finite volume effects have been partially checked and turned out to be small. Exploratory studies have also been performed with non-degenerate valence flavours. The final result for the RGI bag parameter, with all sources of uncertainty (except quenching) under control, is B^K=0.789±0.046\hat B_K =0.789 \pm 0.046.Comment: 54 pages, 11 figure

    Non-perturbative scale evolution of four-fermion operators in two-flavour QCD

    Get PDF
    We apply finite-size recursion techniques based on the Schrodinger functional formalism to determine the renormalization group running of four-fermion operators which appear in the Delta S=2 effective weak Hamiltonian of the Standard Model. Our calculations are done using O(a) improved Wilson fermions with N_f=2 dynamical flavours. Preliminary results are presented for the four-fermion operator which determines the B_K parameter in tmQCD.Comment: 7 pages, 2 figures, talk presented at Lattice2006 (Renormalization

    Facilitating Community Engagement in Academic Pharmacy Careers

    Get PDF
    Despite the recognized value of community engagement in academic pharmacy, the implementation of sustainable and fruitful community partnerships can be challenging. This manuscript will highlight a junior faculty member’s journey with community engagement, sharing the ways that community engagement can guide an academic career and the benefits of community engagement in teaching, research and service. Also highlighted is the role – and argued responsibility - of the academic institution in community engagement, as well as an identification of the barriers that might be interfering with pharmacy faculty community engagement. Considerations for the development of faculty members striving to more fully incorporate engagement into their teaching, research, and service are provided. Conflict of Interest I declare no conflicts of interest or financial interests that the authors or members of their immediate families have in any product or service discussed in the manuscript, including grants (pending or received), employment, gifts, stock holdings or options, honoraria, consultancies, expert testimony, patents and royalties.   Type: Commentar

    K-->pipi amplitudes from lattice QCD with a light charm quark

    Get PDF
    We compute the leading-order low-energy constants of the DeltaS=1 effective weak Hamiltonian in the quenched approximation of QCD with up, down, strange, and charm quarks degenerate and light. They are extracted by comparing the predictions of finite volume chiral perturbation theory with lattice QCD computations of suitable correlation functions carried out with quark masses ranging from a few MeV up to half of the physical strange mass. We observe a large DeltaI=1/2 enhancement in this corner of the parameter space of the theory. Although matching with the experimental result is not observed for the DeltaI=1/2 amplitude, our computation suggests large QCD contributions to the physical DeltaI=1/2 rule in the GIM limit, and represents the first step to quantify the role of the charm quark-mass in K-->pipi amplitudes.Comment: 4 pages, 1 figure. Minor modifications. Final version to appear on PR

    A perturbative study of two four-quark operators in finite volume renormalization schemes

    Full text link
    Starting from the QCD Schroedinger functional (SF), we define a family of renormalization schemes for two four-quark operators, which are, in the chiral limit, protected against mixing with other operators. With the appropriate flavour assignments these operators can be interpreted as part of either the ΔF=1\Delta F=1 or ΔF=2\Delta F=2 effective weak Hamiltonians. In view of lattice QCD with Wilson-type quarks, we focus on the parity odd components of the operators, since these are multiplicatively renormalized both on the lattice and in continuum schemes. We consider 9 different SF schemes and relate them to commonly used continuum schemes at one-loop order of perturbation theory. In this way the two-loop anomalous dimensions in the SF schemes can be inferred. As a by-product of our calculation we also obtain the one-loop cutoff effects in the step-scaling functions of the respective renormalization constants, for both O(a) improved and unimproved Wilson quarks. Our results will be needed in a separate study of the non-perturbative scale evolution of these operators.Comment: 22 pages, 4 figure

    Non-perturbative renormalisation of left-left four-fermion operators with Neuberger fermions

    Get PDF
    We outline a general strategy for the non-perturbative renormalisation of composite operators in discretisations based on Neuberger fermions, via a matching to results obtained with Wilson-type fermions. As an application, we consider the renormalisation of the four-quark operators entering the Delta S=1 and Delta S=2 effective Hamiltonians. Our results are an essential ingredient for the determination of the low-energy constants governing non-leptonic kaon decays.Comment: 14 pages, 3 figure
    • …
    corecore